Skip to main content
Top

2018 | OriginalPaper | Chapter

Interaction of Multiphase Fluids and Solid Structures

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fluid–Structure Interaction (FSI) problems are ubiquitous in almost every branch of engineering and science. Their nonlinear and time-dependent nature makes usually the analytical solution very difficult or even impossible to obtain, requiring the use of experimental analysis and/or numerical simulations. This fact has prompted the development of a great variety of numerical methods for FSI. However, most of the efforts have been focused on classical fluids governed by the Navier–Stokes equations, which cannot capture the physical mechanisms behind multiphase fluids. Here, we present several models for the interplay of solids and multiphase flows, which we apply to particular problems such as phase-change-driven implosion, droplet motion, and elastocapillarity.
In this work, the behavior of the structure is described by the nonlinear equations of elastodynamics and treated as a hyperelastic solid. In particular, we employ a Neo-Hookean and a Saint Venant–Kirchhoff model. Our approach for the multiphase fluid is based on the diffuse-interface or phase-field method. The Navier–Stokes–Korteweg equations are used to describe compressible fluids that are composed of two phases of the same component, which may undergo phase transformation. The Navier–Stokes–Cahn–Hilliard equations are used to describe two-component immiscible flows with surface tension. As FSI technique, we adopt a boundary-fitted approach with matching discretization at the interface. This choice leads to a natural monolithic FSI coupling with strong, exact enforcement of the kinematic conditions. We use the Lagrangian description to derive the semidiscrete form of the solid equations and the Arbitrary Lagrangian–Eulerian description for the fluid domain. For the spatial discretization we adopt isogeometric analysis based on Non-Uniform Rational B-Splines. Regarding the time integration, we use a generalized-α scheme. The nonlinear system of equations is solved using a Newton–Raphson iteration procedure, which leads to a two-stage predictor-multicorrector algorithm. A quasi-direct monolithic formulation is adopted for the solution of the FSI problem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. J. Agresti, E. Antipov, A. R. Abate, K. Ahn, A. C. Rowat, J.-C. Baret, M. Marquez, A. M Klibanov, A. D. Griffiths, and D. A. Weitz. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proceedings of the National Academy of Sciences, 107(9):4004–4009, 2010.CrossRef J. J. Agresti, E. Antipov, A. R. Abate, K. Ahn, A. C. Rowat, J.-C. Baret, M. Marquez, A. M Klibanov, A. D. Griffiths, and D. A. Weitz. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proceedings of the National Academy of Sciences, 107(9):4004–4009, 2010.CrossRef
2.
go back to reference D. M. Anderson, G. B. McFadden, and A. A. Wheeler. Diffuse-interface methods in fluid mechanics. Annual Review of Fluid Mechanics, 30:139–165, 1998.MathSciNetCrossRef D. M. Anderson, G. B. McFadden, and A. A. Wheeler. Diffuse-interface methods in fluid mechanics. Annual Review of Fluid Mechanics, 30:139–165, 1998.MathSciNetCrossRef
3.
go back to reference G. K. Batchelor. An introduction to fluid dynamics. Cambridge University Press, 2000.CrossRef G. K. Batchelor. An introduction to fluid dynamics. Cambridge University Press, 2000.CrossRef
4.
go back to reference Y. Bazilevs, V.M. Calo, T.J.R. Hughes, and Y. Zhang. Isogeometric Fluid-Structure Interaction: Theory, algorithms, and computations. Computational Mechanics, 43(1):3–37, 2008.MathSciNetCrossRef Y. Bazilevs, V.M. Calo, T.J.R. Hughes, and Y. Zhang. Isogeometric Fluid-Structure Interaction: Theory, algorithms, and computations. Computational Mechanics, 43(1):3–37, 2008.MathSciNetCrossRef
5.
go back to reference Y. Bazilevs, M.-C. Hsu, D.J. Benson, S. Sankaran, and A.L. Marsden. Computational Fluid-Structure Interaction: Methods and application to a total cavopulmonary connection. Computational Mechanics, 45(1):77–89, 2009.MathSciNetCrossRef Y. Bazilevs, M.-C. Hsu, D.J. Benson, S. Sankaran, and A.L. Marsden. Computational Fluid-Structure Interaction: Methods and application to a total cavopulmonary connection. Computational Mechanics, 45(1):77–89, 2009.MathSciNetCrossRef
6.
go back to reference Y. Bazilevs, K. Takizawa, and T. E. Tezduyar. Challenges and directions in computational fluid-structure interaction. Mathematical Models and Methods in Applied Sciences, 23:215–221, 2013.MathSciNetCrossRef Y. Bazilevs, K. Takizawa, and T. E. Tezduyar. Challenges and directions in computational fluid-structure interaction. Mathematical Models and Methods in Applied Sciences, 23:215–221, 2013.MathSciNetCrossRef
7.
go back to reference Y. Bazilevs, K. Takizawa, and T.E. Tezduyar. Computational Fluid-Structure Interaction. Methods and Applications. Wiley, 2013. Y. Bazilevs, K. Takizawa, and T.E. Tezduyar. Computational Fluid-Structure Interaction. Methods and Applications. Wiley, 2013.
8.
go back to reference Y. Bazilevs, K. Takizawa, T.E. Tezduyar, M.-C. Hsu, N. Kostov, and S. McIntyre. Aerodynamic and FSI Analysis of Wind Turbines with the ALE-VMS and ST-VMS Methods. Archives of Computational Methods in Engineering, 21(4):359–398, 2014.MathSciNetCrossRef Y. Bazilevs, K. Takizawa, T.E. Tezduyar, M.-C. Hsu, N. Kostov, and S. McIntyre. Aerodynamic and FSI Analysis of Wind Turbines with the ALE-VMS and ST-VMS Methods. Archives of Computational Methods in Engineering, 21(4):359–398, 2014.MathSciNetCrossRef
9.
go back to reference T. Biben, K. Kassner, and C. Misbah. Phase-field approach to three-dimensional vesicle dynamics. Physical Review E, 72:041921, Oct 2005.CrossRef T. Biben, K. Kassner, and C. Misbah. Phase-field approach to three-dimensional vesicle dynamics. Physical Review E, 72:041921, Oct 2005.CrossRef
10.
go back to reference J. Bico, B. Roman, L. Moulin, and A. Boudaoud. Adhesion: elastocapillary coalescence in wet hair. Nature, 432(7018):690–690, 2004.CrossRef J. Bico, B. Roman, L. Moulin, and A. Boudaoud. Adhesion: elastocapillary coalescence in wet hair. Nature, 432(7018):690–690, 2004.CrossRef
11.
go back to reference I. B. Bischofs and U. S. Schwarz. Cell organization in soft media due to active mechanosensing. Proceedings of the National Academy of Sciences, 100(16):9274–9279, 2003.CrossRef I. B. Bischofs and U. S. Schwarz. Cell organization in soft media due to active mechanosensing. Proceedings of the National Academy of Sciences, 100(16):9274–9279, 2003.CrossRef
12.
go back to reference J. Bueno, Y. Bazilevs, R. Juanes, and H. Gomez. Droplet motion driven by tensotaxis. Extreme Mechanics Letters, 13:10–16, 2017.CrossRef J. Bueno, Y. Bazilevs, R. Juanes, and H. Gomez. Droplet motion driven by tensotaxis. Extreme Mechanics Letters, 13:10–16, 2017.CrossRef
13.
go back to reference J. Bueno, C. Bona-Casas, Y. Bazilevs, and H. Gomez. Interaction of complex fluids and solids: Theory, algorithms and application to phase-change-driven implosion. Computational Mechanics, 55(6):1105–1118, 2015.MathSciNetCrossRef J. Bueno, C. Bona-Casas, Y. Bazilevs, and H. Gomez. Interaction of complex fluids and solids: Theory, algorithms and application to phase-change-driven implosion. Computational Mechanics, 55(6):1105–1118, 2015.MathSciNetCrossRef
14.
go back to reference J. Bueno, H. Casquero, Y. Bazilevs, and H. Gomez. Three-dimensional dynamic simulation of elastocapillarity. Meccanica, 53(6):1221–1237, 2018.MathSciNetCrossRef J. Bueno, H. Casquero, Y. Bazilevs, and H. Gomez. Three-dimensional dynamic simulation of elastocapillarity. Meccanica, 53(6):1221–1237, 2018.MathSciNetCrossRef
15.
go back to reference E. Cerda and L. Mahadevan. Geometry and physics of wrinkling. Physical Review Letters, 90(7):074302, 2003. E. Cerda and L. Mahadevan. Geometry and physics of wrinkling. Physical Review Letters, 90(7):074302, 2003.
16.
go back to reference N. Chakrapani, B. Wei, A. Carrillo, P. M. Ajayan, and R. S. Kane. Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams. Proceedings of the National Academy of Sciences, 101(12):4009–4012, 2004.CrossRef N. Chakrapani, B. Wei, A. Carrillo, P. M. Ajayan, and R. S. Kane. Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams. Proceedings of the National Academy of Sciences, 101(12):4009–4012, 2004.CrossRef
17.
go back to reference L.Q. Chen. Phase-field models for microstructure evolution. Annual Review of Materials Research, 32(1):113–140, 2002.CrossRef L.Q. Chen. Phase-field models for microstructure evolution. Annual Review of Materials Research, 32(1):113–140, 2002.CrossRef
18.
go back to reference P. Chiquet, D. Broseta, and S. Thibeau. Wettability alteration of caprock minerals by carbon dioxide. Geofluids, 7(2):112–122, 2007.CrossRef P. Chiquet, D. Broseta, and S. Thibeau. Wettability alteration of caprock minerals by carbon dioxide. Geofluids, 7(2):112–122, 2007.CrossRef
19.
go back to reference J. Chung and G.M. Hulbert. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method. Journal of Applied Mechanics, 60:371–375, 1993.MathSciNetCrossRef J. Chung and G.M. Hulbert. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method. Journal of Applied Mechanics, 60:371–375, 1993.MathSciNetCrossRef
20.
go back to reference B. D. Coleman and W. Noll. The thermodynamics of elastic materials with heat conduction and viscosity. Archive for Rational Mechanics and Analysis, 13(1):167–178, 1963.MathSciNetCrossRef B. D. Coleman and W. Noll. The thermodynamics of elastic materials with heat conduction and viscosity. Archive for Rational Mechanics and Analysis, 13(1):167–178, 1963.MathSciNetCrossRef
21.
go back to reference L. Cueto-Felgueroso and R. Juanes. Nonlocal interface dynamics and pattern formation in gravity-driven unsaturated flow through porous media. Physical Review Letters, 101:244504, 2008.CrossRef L. Cueto-Felgueroso and R. Juanes. Nonlocal interface dynamics and pattern formation in gravity-driven unsaturated flow through porous media. Physical Review Letters, 101:244504, 2008.CrossRef
22.
go back to reference L. Cueto-Felgueroso and R. Juanes. Macroscopic phase-field modeling of partial wetting: bubbles in a capillary tube. Physical Review Letters, 108:144502, 2012.CrossRef L. Cueto-Felgueroso and R. Juanes. Macroscopic phase-field modeling of partial wetting: bubbles in a capillary tube. Physical Review Letters, 108:144502, 2012.CrossRef
23.
go back to reference P. G. de Gennes. Wetting: statics and dynamics. Review of Modern Physics, 57:827–863, 1985.CrossRef P. G. de Gennes. Wetting: statics and dynamics. Review of Modern Physics, 57:827–863, 1985.CrossRef
24.
go back to reference P.-G. De Gennes, F. Brochard-Wyart, and D. Quéré. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer Science & Business Media, 2004. P.-G. De Gennes, F. Brochard-Wyart, and D. Quéré. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer Science & Business Media, 2004.
25.
go back to reference L. Dedè, M.J. Borden, and T.J.R. Hughes. Isogeometric analysis for topology optimization with a phase field model. Archives of Computational Methods in Engineering, 19(3):427–465, 2012.MathSciNetCrossRef L. Dedè, M.J. Borden, and T.J.R. Hughes. Isogeometric analysis for topology optimization with a phase field model. Archives of Computational Methods in Engineering, 19(3):427–465, 2012.MathSciNetCrossRef
26.
go back to reference M. DeVolder and A. J. Hart. Engineering hierarchical nanostructures by elastocapillary self-assembly. Angewandte Chemie International Edition, 52(9):2412–2425, 2013.CrossRef M. DeVolder and A. J. Hart. Engineering hierarchical nanostructures by elastocapillary self-assembly. Angewandte Chemie International Edition, 52(9):2412–2425, 2013.CrossRef
27.
go back to reference D. Diehl. Higher Order Schemes for Simulation of Compressible Liquid-Vapor Flow with Phase Change. PhD thesis, Albert-Ludwigs-Universitt Freiburg, 2007. D. Diehl. Higher Order Schemes for Simulation of Compressible Liquid-Vapor Flow with Phase Change. PhD thesis, Albert-Ludwigs-Universitt Freiburg, 2007.
28.
go back to reference J. Donea and A. Huerta. Finite Element Methods for Flow Problems. Wiley, 2003.CrossRef J. Donea and A. Huerta. Finite Element Methods for Flow Problems. Wiley, 2003.CrossRef
29.
go back to reference J. Donea, A. Huerta, J.-Ph. Ponthot, and A. Rodrguez-Ferran. Encyclopedia of Computational Mechanics. Arbitrary Lagrangian-Eulerian Methods., volume 1, chapter 14. John Wiley & Sons, Ltd, 2004. J. Donea, A. Huerta, J.-Ph. Ponthot, and A. Rodrguez-Ferran. Encyclopedia of Computational Mechanics. Arbitrary Lagrangian-Eulerian Methods., volume 1, chapter 14. John Wiley & Sons, Ltd, 2004.
30.
go back to reference C. Duprat, A. D. Bick, P. B. Warren, and H. A. Stone. Evaporation of drops on two parallel fibers: Influence of the liquid morphology and fiber elasticity. Langmuir, 29(25):7857–7863, 2013. PMID: 23705986.CrossRef C. Duprat, A. D. Bick, P. B. Warren, and H. A. Stone. Evaporation of drops on two parallel fibers: Influence of the liquid morphology and fiber elasticity. Langmuir, 29(25):7857–7863, 2013. PMID: 23705986.CrossRef
31.
go back to reference A. Fallah-Araghi, J.-C. Baret, M. l. Ryckelynck, and A. D. Griffiths. A completely in vitro ultrahigh-throughput droplet-based microfluidic screening system for protein engineering and directed evolution. Lab on a Chip, 12(5):882–891, 2012.CrossRef A. Fallah-Araghi, J.-C. Baret, M. l. Ryckelynck, and A. D. Griffiths. A completely in vitro ultrahigh-throughput droplet-based microfluidic screening system for protein engineering and directed evolution. Lab on a Chip, 12(5):882–891, 2012.CrossRef
32.
go back to reference C. Farhat, A. Rallu, K. Wang, and T. Belytschko. Robust and provably second-order explicit-explicit and implicit-explicit staggered time-integrators for highly non-linear compressible Fluid-Structure Interaction problems. International Journal for Numerical Methods in Engineering, 84(1):73–107, 2010.MathSciNetCrossRef C. Farhat, A. Rallu, K. Wang, and T. Belytschko. Robust and provably second-order explicit-explicit and implicit-explicit staggered time-integrators for highly non-linear compressible Fluid-Structure Interaction problems. International Journal for Numerical Methods in Engineering, 84(1):73–107, 2010.MathSciNetCrossRef
33.
go back to reference C. Farhat, K. G. Van der Zee, and P. Geuzaine. Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Computer Methods in Applied Mechanics and Engineering, 195(17):1973–2001, 2006.MathSciNetCrossRef C. Farhat, K. G. Van der Zee, and P. Geuzaine. Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Computer Methods in Applied Mechanics and Engineering, 195(17):1973–2001, 2006.MathSciNetCrossRef
34.
go back to reference I. Fonseca, M. Morini, and V. Slastikov. Surfactants in foam stability: A phase-field model. Archive for Rational Mechanics and Analysis, 183(3):411–456, 2007.MathSciNetCrossRef I. Fonseca, M. Morini, and V. Slastikov. Surfactants in foam stability: A phase-field model. Archive for Rational Mechanics and Analysis, 183(3):411–456, 2007.MathSciNetCrossRef
35.
go back to reference E. Fried and M.E. Gurtin. Dynamic solid-solid transitions with phase characterized by an order parameter. Physica D: Nonlinear Phenomena, 72(4):287–308, 1994.MathSciNetCrossRef E. Fried and M.E. Gurtin. Dynamic solid-solid transitions with phase characterized by an order parameter. Physica D: Nonlinear Phenomena, 72(4):287–308, 1994.MathSciNetCrossRef
36.
go back to reference J.W. Gibbs. On the Equilibrium of Heterogeneous Substances. 1876. J.W. Gibbs. On the Equilibrium of Heterogeneous Substances. 1876.
37.
go back to reference H. Gomez, V.M. Calo, Y. Bazilevs, and T.J.R. Hughes. Isogeometric Analysis of the Cahn-Hilliard phase-field model. Computer Methods in Applied Mechanics and Engineering, 197:43334352, 2008.MathSciNetCrossRef H. Gomez, V.M. Calo, Y. Bazilevs, and T.J.R. Hughes. Isogeometric Analysis of the Cahn-Hilliard phase-field model. Computer Methods in Applied Mechanics and Engineering, 197:43334352, 2008.MathSciNetCrossRef
38.
go back to reference H. Gomez, L. Cueto-Felgueroso, and R. Juanes. Three-dimensional simulation of unstable gravity-driven infiltration of water into a porous medium. Journal of Computational Physics, 238:217–239, 2013.MathSciNetCrossRef H. Gomez, L. Cueto-Felgueroso, and R. Juanes. Three-dimensional simulation of unstable gravity-driven infiltration of water into a porous medium. Journal of Computational Physics, 238:217–239, 2013.MathSciNetCrossRef
39.
go back to reference H. Gomez and T.J.R. Hughes. Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. Journal of Computational Physics, 230(13):5310–5327, 2011.MathSciNetCrossRef H. Gomez and T.J.R. Hughes. Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. Journal of Computational Physics, 230(13):5310–5327, 2011.MathSciNetCrossRef
40.
go back to reference H. Gomez, T.J.R. Hughes, X. Nogueira, and V.M. Calo. Isogeometric Analysis of the isothermal Navier-Stokes-Korteweg equations. Computer Methods in Applied Mechanics and Engineering, 199(25–28):1828–1840, 2010.MathSciNetCrossRef H. Gomez, T.J.R. Hughes, X. Nogueira, and V.M. Calo. Isogeometric Analysis of the isothermal Navier-Stokes-Korteweg equations. Computer Methods in Applied Mechanics and Engineering, 199(25–28):1828–1840, 2010.MathSciNetCrossRef
41.
go back to reference H. Gomez and K. van der Zee. Encyclopedia of Computational Mechanics. Computational phase-field modeling. John Wiley & Sons, Ltd, 2017. H. Gomez and K. van der Zee. Encyclopedia of Computational Mechanics. Computational phase-field modeling. John Wiley & Sons, Ltd, 2017.
42.
go back to reference J. Huang, M. Juszkiewicz, W. H. de Jeu, E. Cerda, T. Emrick, N. Menon, and T. P. Russell. Capillary wrinkling of floating thin polymer films. Science, 317(5838):650–653, 2007.CrossRef J. Huang, M. Juszkiewicz, W. H. de Jeu, E. Cerda, T. Emrick, N. Menon, and T. P. Russell. Capillary wrinkling of floating thin polymer films. Science, 317(5838):650–653, 2007.CrossRef
43.
go back to reference T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric Analysis: CAD, Finite Elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194(39–41):4135–4195, 2005.MathSciNetCrossRef T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric Analysis: CAD, Finite Elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194(39–41):4135–4195, 2005.MathSciNetCrossRef
44.
go back to reference T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann. Lagrangian-Eulerian Finite Element formulation for incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering, 29(3):329–349, 1981.MathSciNetCrossRef T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann. Lagrangian-Eulerian Finite Element formulation for incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering, 29(3):329–349, 1981.MathSciNetCrossRef
45.
go back to reference C.M. Ikeda. Fluid-Structure Interactions. Implosions of shell structures and wave impact on a flat plate. PhD thesis, University of Maryland, 2012. C.M. Ikeda. Fluid-Structure Interactions. Implosions of shell structures and wave impact on a flat plate. PhD thesis, University of Maryland, 2012.
46.
go back to reference J.H. Jeong, N. Goldenfeld, and J.A. Dantzig. Phase field model for three-dimensional dendritic growth with fluid flow. Physical Review E, 64:041602, 2001.CrossRef J.H. Jeong, N. Goldenfeld, and J.A. Dantzig. Phase field model for three-dimensional dendritic growth with fluid flow. Physical Review E, 64:041602, 2001.CrossRef
47.
go back to reference D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S. Sacks, and T.J.R. Hughes. An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering, 284:1005–1053, 2015.MathSciNetCrossRef D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S. Sacks, and T.J.R. Hughes. An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering, 284:1005–1053, 2015.MathSciNetCrossRef
48.
go back to reference K. Kamran, R. Rossi, E. Oñate, and S.R. Idelshon. A compressible lagrangian framework for modeling the fluid–structure interaction in the underwater implosion of an aluminum cylinder. Mathematical Models and Methods in Applied Sciences, 23(02):339–367, 2013.MathSciNetCrossRef K. Kamran, R. Rossi, E. Oñate, and S.R. Idelshon. A compressible lagrangian framework for modeling the fluid–structure interaction in the underwater implosion of an aluminum cylinder. Mathematical Models and Methods in Applied Sciences, 23(02):339–367, 2013.MathSciNetCrossRef
49.
go back to reference K. Kamran, R. Rossi, E. Oñate, and S.R. Idelsohn. A compressible lagrangian framework for the simulation of the underwater implosion of large air bubbles. Computer Methods in Applied Mechanics and Engineering, 255:210–225, 2013.MathSciNetCrossRef K. Kamran, R. Rossi, E. Oñate, and S.R. Idelsohn. A compressible lagrangian framework for the simulation of the underwater implosion of large air bubbles. Computer Methods in Applied Mechanics and Engineering, 255:210–225, 2013.MathSciNetCrossRef
50.
go back to reference S. Karpitschka, A. Pandey, L. A. Lubbers, J. H. Weijs, L. Botto, S. Das, B. Andreotti, and J. H. Snoeijer. Liquid drops attract or repel by the inverted cheerios effect. Proceedings of the National Academy of Sciences, 113(27):7403–7407, 2016.CrossRef S. Karpitschka, A. Pandey, L. A. Lubbers, J. H. Weijs, L. Botto, S. Das, B. Andreotti, and J. H. Snoeijer. Liquid drops attract or repel by the inverted cheerios effect. Proceedings of the National Academy of Sciences, 113(27):7403–7407, 2016.CrossRef
51.
go back to reference J. Kiendl, M. Ambati, L. De Lorenzis, H. Gomez, and A. Reali. Phase-field description of brittle fracture in plates and shells. Computer Methods in Applied Mechanics and Engineering, 312:374–394, 2016.MathSciNetCrossRef J. Kiendl, M. Ambati, L. De Lorenzis, H. Gomez, and A. Reali. Phase-field description of brittle fracture in plates and shells. Computer Methods in Applied Mechanics and Engineering, 312:374–394, 2016.MathSciNetCrossRef
52.
53.
go back to reference K. K. Lau, J. Bico, K. B. Teo, M. Chhowalla, G. A. Amaratunga, W. Milne, G. H McKinley, and K. Gleason. Superhydrophobic carbon nanotube forests. Nano letters, 3(12):1701–1705, 2003.CrossRef K. K. Lau, J. Bico, K. B. Teo, M. Chhowalla, G. A. Amaratunga, W. Milne, G. H McKinley, and K. Gleason. Superhydrophobic carbon nanotube forests. Nano letters, 3(12):1701–1705, 2003.CrossRef
54.
go back to reference S.-L. Lin, J.-C. Yang, K.-N. Ho, C.-H. Wang, C.-W. Yeh, and H.-M. Huang. Effects of compressive residual stress on the morphologic changes of fibroblasts. Medical & Biological Engineering & Computing, 47(12):1273–1279, 2009.CrossRef S.-L. Lin, J.-C. Yang, K.-N. Ho, C.-H. Wang, C.-W. Yeh, and H.-M. Huang. Effects of compressive residual stress on the morphologic changes of fibroblasts. Medical & Biological Engineering & Computing, 47(12):1273–1279, 2009.CrossRef
55.
go back to reference J. Liu. Thermodynamically consistent modeling and simulation of multiphase flows. PhD thesis, The University of Texas at Austin, 2014. J. Liu. Thermodynamically consistent modeling and simulation of multiphase flows. PhD thesis, The University of Texas at Austin, 2014.
56.
go back to reference J. Liu, H. Gomez, J.A. Evans, T.J.R. Hughes, and C.M. Landis. Functional entropy variables: A new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier-Stokes-Korteweg equations. Journal of Computational Physics, 248:47–86, 2013.MathSciNetCrossRef J. Liu, H. Gomez, J.A. Evans, T.J.R. Hughes, and C.M. Landis. Functional entropy variables: A new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier-Stokes-Korteweg equations. Journal of Computational Physics, 248:47–86, 2013.MathSciNetCrossRef
57.
go back to reference C.-M. Lo, H.-B. Wang, M. Dembo, and Y.-L. Wang. Cell movement is guided by the rigidity of the substrate. Biophysical Journal, 79(1):144–152, 2000.CrossRef C.-M. Lo, H.-B. Wang, M. Dembo, and Y.-L. Wang. Cell movement is guided by the rigidity of the substrate. Biophysical Journal, 79(1):144–152, 2000.CrossRef
58.
go back to reference C.C. Long, M. Esmaily-Moghadam, A.L. Marsden, and Y. Bazilevs. Computation of residence time in the simulation of pulsatile ventricular assist devices. Computational Mechanics, 54:911–919, 2014.MathSciNetCrossRef C.C. Long, M. Esmaily-Moghadam, A.L. Marsden, and Y. Bazilevs. Computation of residence time in the simulation of pulsatile ventricular assist devices. Computational Mechanics, 54:911–919, 2014.MathSciNetCrossRef
59.
go back to reference J. E. Marsden and T. J. R. Hughes. Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs, NJ, 1983. Reprinted with corrections, Dover, New York, 1994. J. E. Marsden and T. J. R. Hughes. Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs, NJ, 1983. Reprinted with corrections, Dover, New York, 1994.
60.
go back to reference C Miehe, F Welschinger, and M Hofacker. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering, 83(10):1273–1311, 2010.MathSciNetCrossRef C Miehe, F Welschinger, and M Hofacker. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering, 83(10):1273–1311, 2010.MathSciNetCrossRef
61.
go back to reference P. Moreo, J. M. García-Aznar, and M. Doblaré. Modeling mechanosensing and its effect on the migration and proliferation of adherent cells. Acta Biomaterialia, 4(3):613–621, 2008.CrossRef P. Moreo, J. M. García-Aznar, and M. Doblaré. Modeling mechanosensing and its effect on the migration and proliferation of adherent cells. Acta Biomaterialia, 4(3):613–621, 2008.CrossRef
62.
go back to reference O. Penrose and P.C. Fife. Thermodynamically consistent models of phase-field type for the kinetic of phase transitions. Physica D: Nonlinear Phenomena, 43(1):44–62, 1990.MathSciNetCrossRef O. Penrose and P.C. Fife. Thermodynamically consistent models of phase-field type for the kinetic of phase transitions. Physica D: Nonlinear Phenomena, 43(1):44–62, 1990.MathSciNetCrossRef
64.
go back to reference S.D. Poisson. Nouvelle théorie de l’action capillaire. Bachelier père et fils, 1831. S.D. Poisson. Nouvelle théorie de l’action capillaire. Bachelier père et fils, 1831.
65.
go back to reference N. Provatas and K. Elder. Phase-Field Methods in Materials Science and Engineering. Wiley-VCH Verlag GmbH & Co. KGaA, 2010. N. Provatas and K. Elder. Phase-Field Methods in Materials Science and Engineering. Wiley-VCH Verlag GmbH & Co. KGaA, 2010.
66.
go back to reference O. Raccurt, F. Tardif, F. A. d’Avitaya, and T. Vareine. Influence of liquid surface tension on stiction of SOI MEMS. Journal of Micromechanics and Microengineering, 14(7):1083, 2004.CrossRef O. Raccurt, F. Tardif, F. A. d’Avitaya, and T. Vareine. Influence of liquid surface tension on stiction of SOI MEMS. Journal of Micromechanics and Microengineering, 14(7):1083, 2004.CrossRef
67.
go back to reference A.S.D. Rallu. A Multiphase Fluid-Structure Computational Framework for Underwater Implosion Problems. PhD thesis, Standford University, 2009. A.S.D. Rallu. A Multiphase Fluid-Structure Computational Framework for Underwater Implosion Problems. PhD thesis, Standford University, 2009.
68.
go back to reference B. Roman and J. Bico. Elasto-capillarity: deforming an elastic structure with a liquid droplet. Journal of Physics: Condensed Matter, 22(49):493101, 2010. B. Roman and J. Bico. Elasto-capillarity: deforming an elastic structure with a liquid droplet. Journal of Physics: Condensed Matter, 22(49):493101, 2010.
69.
go back to reference J.C. Simo and T.J.R. Hughes. Computational Inelasticity. Springer-Verlag, New Yoirk, 1998.MATH J.C. Simo and T.J.R. Hughes. Computational Inelasticity. Springer-Verlag, New Yoirk, 1998.MATH
70.
go back to reference H. Song, D.L. Chen, and R.F. Ismagilov. Reactions in droplets in microfluidic channels. Angewandte Chemie International Edition, 45(44):7336–7356, 2006.CrossRef H. Song, D.L. Chen, and R.F. Ismagilov. Reactions in droplets in microfluidic channels. Angewandte Chemie International Edition, 45(44):7336–7356, 2006.CrossRef
71.
go back to reference I. Steinbach. Phase-field models in materials science. Modelling and Simulation in Materials Science and Engineering, 17(7):073001, 2009.CrossRef I. Steinbach. Phase-field models in materials science. Modelling and Simulation in Materials Science and Engineering, 17(7):073001, 2009.CrossRef
72.
go back to reference R. W. Style, R. Boltyanskiy, Y. Che, J. S. Wettlaufer, L. A. Wilen, and E. R. Dufresne. Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Physical Review Letters, 110:066103, Feb 2013.CrossRef R. W. Style, R. Boltyanskiy, Y. Che, J. S. Wettlaufer, L. A. Wilen, and E. R. Dufresne. Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Physical Review Letters, 110:066103, Feb 2013.CrossRef
73.
go back to reference R. W. Style and E. R. Dufresne. Static wetting on deformable substrates, from liquids to soft solids. Soft Matter, 8(27):7177–7184, 2012.CrossRef R. W. Style and E. R. Dufresne. Static wetting on deformable substrates, from liquids to soft solids. Soft Matter, 8(27):7177–7184, 2012.CrossRef
74.
go back to reference R. W. Style, A. Jagota, C.-Y. Hui, and E. R. Dufresne. Elastocapillarity: Surface tension and the mechanics of soft solids. Annual Review of Condensed Matter Physics, 8(0), 2016.CrossRef R. W. Style, A. Jagota, C.-Y. Hui, and E. R. Dufresne. Elastocapillarity: Surface tension and the mechanics of soft solids. Annual Review of Condensed Matter Physics, 8(0), 2016.CrossRef
75.
go back to reference R.W. Style, Y. Che, S.J. Park, B.M. Weon, J.H. Je, C. Hyland, G.K. German, M.P. Power, L.A. Wilen, J.S. Wettlaufer, et al. Patterning droplets with durotaxis. Proceedings of the National Academy of Sciences, 110(31):12541–12544, 2013.CrossRef R.W. Style, Y. Che, S.J. Park, B.M. Weon, J.H. Je, C. Hyland, G.K. German, M.P. Power, L.A. Wilen, J.S. Wettlaufer, et al. Patterning droplets with durotaxis. Proceedings of the National Academy of Sciences, 110(31):12541–12544, 2013.CrossRef
76.
go back to reference H. Suito, K. Takizawa, V.Q.H. Huynh, D. Sze, and T. Ueda. FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta. Computational Mechanics, 54:1035–1045, 2014.CrossRef H. Suito, K. Takizawa, V.Q.H. Huynh, D. Sze, and T. Ueda. FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta. Computational Mechanics, 54:1035–1045, 2014.CrossRef
77.
go back to reference R. Sunyer, V. Conte, J. Escribano, A. Elosegui-Artola, A. Labernadie, L. Valon, D. Navajas, J. M. García-Aznar, J. J. Muñoz, P. Roca-Cusachs, and X. Trepat. Collective cell durotaxis emerges from long-range intercellular force transmission. Science, 353(6304):1157–1161, 2016.CrossRef R. Sunyer, V. Conte, J. Escribano, A. Elosegui-Artola, A. Labernadie, L. Valon, D. Navajas, J. M. García-Aznar, J. J. Muñoz, P. Roca-Cusachs, and X. Trepat. Collective cell durotaxis emerges from long-range intercellular force transmission. Science, 353(6304):1157–1161, 2016.CrossRef
78.
go back to reference K. Takizawa. Computational engineering analysis with the new-generation space–time methods. Computational Mechanics, 54:193–211, 2014.MathSciNetCrossRef K. Takizawa. Computational engineering analysis with the new-generation space–time methods. Computational Mechanics, 54:193–211, 2014.MathSciNetCrossRef
79.
go back to reference K. Takizawa, Y. Bazilevs, T.E. Tezduyar, C.C. Long, A.L. Marsden, and K. Schjodt. ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Mathematical Models and Methods in Applied Sciences, 24:2437–2486, 2014.MathSciNetCrossRef K. Takizawa, Y. Bazilevs, T.E. Tezduyar, C.C. Long, A.L. Marsden, and K. Schjodt. ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Mathematical Models and Methods in Applied Sciences, 24:2437–2486, 2014.MathSciNetCrossRef
80.
go back to reference K. Takizawa, H. Takagi, T. E. Tezduyar, and R. Torii. Estimation of element-based zero-stress state for arterial FSI computations. Computational Mechanics, 54:895–910, 2014.MathSciNetCrossRef K. Takizawa, H. Takagi, T. E. Tezduyar, and R. Torii. Estimation of element-based zero-stress state for arterial FSI computations. Computational Mechanics, 54:895–910, 2014.MathSciNetCrossRef
81.
go back to reference K. Takizawa, T. E. Tezduyar, R. Kolesar, C. Boswell, T. Kanai, and K. Montel. Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Computational Mechanics, 54(6):1461–1476, 2014.MathSciNetCrossRef K. Takizawa, T. E. Tezduyar, R. Kolesar, C. Boswell, T. Kanai, and K. Montel. Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Computational Mechanics, 54(6):1461–1476, 2014.MathSciNetCrossRef
82.
go back to reference K. Takizawa, R. Torii, H. Takagi, T.E. Tezduyar, and X.Y. Xu. Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates. Computational Mechanics, 54:1047–1053, 2014.CrossRef K. Takizawa, R. Torii, H. Takagi, T.E. Tezduyar, and X.Y. Xu. Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates. Computational Mechanics, 54:1047–1053, 2014.CrossRef
83.
go back to reference T. Tanaka, M. Morigami, and N. Atoda. Mechanism of resist pattern collapse during development process. Japanese Journal of Applied Physics, 32(12S):6059, 1993.CrossRef T. Tanaka, M. Morigami, and N. Atoda. Mechanism of resist pattern collapse during development process. Japanese Journal of Applied Physics, 32(12S):6059, 1993.CrossRef
84.
go back to reference S. H. Tawfick, J. Bico, and S. Barcelo. Three-dimensional lithography by elasto-capillary engineering of filamentary materials. MRS Bulletin, 41(02):108–114, 2016.CrossRef S. H. Tawfick, J. Bico, and S. Barcelo. Three-dimensional lithography by elasto-capillary engineering of filamentary materials. MRS Bulletin, 41(02):108–114, 2016.CrossRef
85.
go back to reference T.E. Tezduyar, S. Sathe, R. Keedy, and K. Stein. Space–time finite element techniques for computation of fluid–structure interactions. Computer Methods in Applied Mechanics and Engineering, 195(17–18):2002–2027, 2006.MathSciNetCrossRef T.E. Tezduyar, S. Sathe, R. Keedy, and K. Stein. Space–time finite element techniques for computation of fluid–structure interactions. Computer Methods in Applied Mechanics and Engineering, 195(17–18):2002–2027, 2006.MathSciNetCrossRef
86.
go back to reference S. Tremaine. On the origin of irregular structure in saturn’s rings. The Astronomical Journal, 125(2):894, 2003.CrossRef S. Tremaine. On the origin of irregular structure in saturn’s rings. The Astronomical Journal, 125(2):894, 2003.CrossRef
87.
go back to reference S.E. Turner. Underwater implosion of glass spheres. The Journal of the Acoustical Society of America., 121(2):844–852, 2007.CrossRef S.E. Turner. Underwater implosion of glass spheres. The Journal of the Acoustical Society of America., 121(2):844–852, 2007.CrossRef
88.
go back to reference E. H. van Brummelen, M. Shokrpour-Roudbari, and G. J. van Zwieten. Elasto-Capillarity Simulations Based on the Navier–Stokes–Cahn–Hilliard Equations, pages 451–462. Springer International Publishing, Cham, 2016.MATH E. H. van Brummelen, M. Shokrpour-Roudbari, and G. J. van Zwieten. Elasto-Capillarity Simulations Based on the Navier–Stokes–Cahn–Hilliard Equations, pages 451–462. Springer International Publishing, Cham, 2016.MATH
89.
go back to reference J.D. van der Waals. The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. Journal of Statistical Physics, 20(2):200–244, 1893.CrossRef J.D. van der Waals. The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. Journal of Statistical Physics, 20(2):200–244, 1893.CrossRef
90.
go back to reference C. Wang, M.C.H. Wu, F. Xu, M.-C. Hsu, and Y. Bazilevs. Modeling of a hydraulic arresting gear using fluid–structure interaction and isogeometric analysis. Computers and Fluids, 142:3–14, 2017.MathSciNetCrossRef C. Wang, M.C.H. Wu, F. Xu, M.-C. Hsu, and Y. Bazilevs. Modeling of a hydraulic arresting gear using fluid–structure interaction and isogeometric analysis. Computers and Fluids, 142:3–14, 2017.MathSciNetCrossRef
91.
go back to reference X. Wu, G. J. van Zwieten, and K. G. van der Zee. Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models. International Journal for Numerical Methods in Biomedical Engineering, 30(2):180–203, 2014.MathSciNetCrossRef X. Wu, G. J. van Zwieten, and K. G. van der Zee. Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models. International Journal for Numerical Methods in Biomedical Engineering, 30(2):180–203, 2014.MathSciNetCrossRef
92.
go back to reference J. Xu, G. Vilanova, and H. Gomez. A mathematical model coupling tumor growth and angiogenesis. PloS one, 11(2):e0149422, 2016.CrossRef J. Xu, G. Vilanova, and H. Gomez. A mathematical model coupling tumor growth and angiogenesis. PloS one, 11(2):e0149422, 2016.CrossRef
93.
go back to reference L. Zhang, A. Gerstenberger, X. Wang, and W. K. Liu. Immersed finite element method. Computer Methods in Applied Mechanics and Engineering, 193(21):2051–2067, 2004.MathSciNetCrossRef L. Zhang, A. Gerstenberger, X. Wang, and W. K. Liu. Immersed finite element method. Computer Methods in Applied Mechanics and Engineering, 193(21):2051–2067, 2004.MathSciNetCrossRef
Metadata
Title
Interaction of Multiphase Fluids and Solid Structures
Authors
Hector Gomez
Jesus Bueno
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-96469-0_4

Premium Partners