Skip to main content
Top
Published in: Fluid Dynamics 4/2020

01-07-2020

Interaction of Stationary Disturbances with Tollmien—Schlichting Waves in a Supersonic Boundary Layer

Authors: S. A. Gaponov, N. M. Terekhova

Published in: Fluid Dynamics | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The possibility of controlling unsteady disturbances, traveling Tollmien—Schlichting waves, and stationary streamwise structures is studied. The investigation is performed for the flat-plate boundary layer at the freestream Mach number M = 2. The possible enhancement and suppression of the growth of these waves by stationary streaky structures of the stability eigenproblem of supersonic boundary layer is studied. The problem is solved in the local-parallel approximation within the framework of the three-wave resonance interaction. The pumping wave is a stationary, near-streaky formation. It is shown that even in the stability domain Tollmien—Schlichting waves grow under the influence of the streamwise structures. It is established that under certain conditions the effect of stationary disturbances on these waves can be considerable also in the instability domain and the Reynolds number ranges in which the steady disturbances suppress traveling waves are determined.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1968).MATH H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1968).MATH
2.
go back to reference C.C. Lin, The Theory of Hydrodynamic Stability (Cambridge Univ. Press, 1955).MATH C.C. Lin, The Theory of Hydrodynamic Stability (Cambridge Univ. Press, 1955).MATH
3.
go back to reference P.S. Klebanoff and K.D. Tidstrom, “Evolution of amplified waves leading to transition in a boundary layer with zero pressure gradient,” NASA TN D-195 (1959). P.S. Klebanoff and K.D. Tidstrom, “Evolution of amplified waves leading to transition in a boundary layer with zero pressure gradient,” NASA TN D-195 (1959).
4.
go back to reference W.S. Saric, H.L. Reed, and E.J. Kerschen, “Boundary-layer receptivity to free stream disturbances,” Annu. Rev. Fluid Mech. 34, 291–319 (2002).ADSCrossRef W.S. Saric, H.L. Reed, and E.J. Kerschen, “Boundary-layer receptivity to free stream disturbances,” Annu. Rev. Fluid Mech. 34, 291–319 (2002).ADSCrossRef
5.
go back to reference A.V. Boiko, G.R. Grek, A.V. Dovgal’, and V.V. Kozlov, Physical Mechanisms of Transition to Turbulence in Open Systems (Research Center “Regular and Chaotic Dynamics”, Izhevsk, 2006) [in Russian]. A.V. Boiko, G.R. Grek, A.V. Dovgal’, and V.V. Kozlov, Physical Mechanisms of Transition to Turbulence in Open Systems (Research Center “Regular and Chaotic Dynamics”, Izhevsk, 2006) [in Russian].
7.
go back to reference P. Bradshaw, “The effect of wind tunnel screens on ‘two-dimensional’ boundary layers,” Nat. Phys. Lab. Aero. Rep. No. 1085 (1963). P. Bradshaw, “The effect of wind tunnel screens on ‘two-dimensional’ boundary layers,” Nat. Phys. Lab. Aero. Rep. No. 1085 (1963).
8.
go back to reference P.A. Libby and H. Fox, “Some perturbation solutions in laminar boundary-layer theory. Part 1. The momentum equation,” J. Fluid Mech. 17, 433–449 (1963).ADSMathSciNetCrossRef P.A. Libby and H. Fox, “Some perturbation solutions in laminar boundary-layer theory. Part 1. The momentum equation,” J. Fluid Mech. 17, 433–449 (1963).ADSMathSciNetCrossRef
9.
go back to reference F.P. Bertolotti, “Response of the Blasius boundary layer to free-stream vorticity,” Phys. Fluids9(8), 2286–2299 (1997).ADSCrossRef F.P. Bertolotti, “Response of the Blasius boundary layer to free-stream vorticity,” Phys. Fluids9(8), 2286–2299 (1997).ADSCrossRef
10.
go back to reference M.V. Ustinov, “Receptivity of the flat-plate boundary layer to free-stream turbulence,” FluidDynamics38(3), 397–408 (2003).MathSciNetCrossRef M.V. Ustinov, “Receptivity of the flat-plate boundary layer to free-stream turbulence,” FluidDynamics38(3), 397–408 (2003).MathSciNetCrossRef
11.
go back to reference M.E. Goldstein, “Effect of free-stream turbulence on boundary layer transition,” Phil. Trans. Roy. Soc. A 372, 372 (2014).MathSciNetCrossRef M.E. Goldstein, “Effect of free-stream turbulence on boundary layer transition,” Phil. Trans. Roy. Soc. A 372, 372 (2014).MathSciNetCrossRef
12.
go back to reference S.A. Gaponov and A.V. Yudin, “Interaction of hydrodynamic external disturbances with the boundary layer,” J. Appl. Mech. Techn. Phys.43(1), 83—89 (2002).ADSCrossRef S.A. Gaponov and A.V. Yudin, “Interaction of hydrodynamic external disturbances with the boundary layer,” J. Appl. Mech. Techn. Phys.43(1), 83—89 (2002).ADSCrossRef
13.
go back to reference S.A. Gaponov, “Interaction of external vortical and thermal disturbances with boundary layer,” Intern. J. Mech. 1(1), 15–20 (2007). S.A. Gaponov, “Interaction of external vortical and thermal disturbances with boundary layer,” Intern. J. Mech. 1(1), 15–20 (2007).
14.
go back to reference S.A. Gaponov, “Interaction between a supersonic boundary layer and acoustic disturbances,” Fluid Dynamics12(6), 858–862 (1977).ADSCrossRef S.A. Gaponov, “Interaction between a supersonic boundary layer and acoustic disturbances,” Fluid Dynamics12(6), 858–862 (1977).ADSCrossRef
15.
go back to reference C.E. Grosch and H. Salwen, “The continuous spectrum of the Orr-Sommerfeld equation. Part 1. The spectrum and the eigenfunctions,” J. Fluid Mech.87, 33–54 (1978).ADSMathSciNetCrossRef C.E. Grosch and H. Salwen, “The continuous spectrum of the Orr-Sommerfeld equation. Part 1. The spectrum and the eigenfunctions,” J. Fluid Mech.87, 33–54 (1978).ADSMathSciNetCrossRef
16.
go back to reference C.E. Grosch and H. Salwen, “The continuous spectrum of the Orr-Sommerfeld equation. Part 2. Eigenfunction expansions,” J. Fluid Mech.104, 445–465 (1981).ADSMathSciNetCrossRef C.E. Grosch and H. Salwen, “The continuous spectrum of the Orr-Sommerfeld equation. Part 2. Eigenfunction expansions,” J. Fluid Mech.104, 445–465 (1981).ADSMathSciNetCrossRef
17.
go back to reference M. Dong and X. Wu, “On continuous spectra of the Orr-Sommerfeld/Squire equations and entrainment of free-stream vortical disturbances,” J. Fluid Mech. 732, 616–659 (2013).ADSMathSciNetCrossRef M. Dong and X. Wu, “On continuous spectra of the Orr-Sommerfeld/Squire equations and entrainment of free-stream vortical disturbances,” J. Fluid Mech. 732, 616–659 (2013).ADSMathSciNetCrossRef
18.
go back to reference P. Luchini, “Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations,” J. Fluid Mech. 404, 289–309 (2000).ADSMathSciNetCrossRef P. Luchini, “Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations,” J. Fluid Mech. 404, 289–309 (2000).ADSMathSciNetCrossRef
19.
go back to reference P. Andersson, M. Berggren, and D.S. Henningson, “Optimal disturbances in boundary layers,” in: Proc. AFOSR Workshop on Optimal Design and Control, Ed. by J.T. Borggaard, J. Burns, E. Cliff, and S. Schreck (Boston, 1998). P. Andersson, M. Berggren, and D.S. Henningson, “Optimal disturbances in boundary layers,” in: Proc. AFOSR Workshop on Optimal Design and Control, Ed. by J.T. Borggaard, J. Burns, E. Cliff, and S. Schreck (Boston, 1998).
20.
go back to reference P. Andersson, M. Berggren, and D.S. Henningson, “Optimal disturbances and bypass transition in boundary layers,” Phys. Fluids11, 134–150 (1999).ADSMathSciNetCrossRef P. Andersson, M. Berggren, and D.S. Henningson, “Optimal disturbances and bypass transition in boundary layers,” Phys. Fluids11, 134–150 (1999).ADSMathSciNetCrossRef
21.
22.
go back to reference H. Hultgren and Gustavsson, “Algebraic growth of disturbances in a laminar boundary layer,” Phys. Fluids24, 1000–1004 (1981).ADSCrossRef H. Hultgren and Gustavsson, “Algebraic growth of disturbances in a laminar boundary layer,” Phys. Fluids24, 1000–1004 (1981).ADSCrossRef
23.
go back to reference D. S. Henningson, “An eigenfunction expansion of localized disturbances,” in: Advances in Turbulence 3, Ed. by A.V. Johansson and P.H. Alfredsson (1991), pp. 162–169. D. S. Henningson, “An eigenfunction expansion of localized disturbances,” in: Advances in Turbulence 3, Ed. by A.V. Johansson and P.H. Alfredsson (1991), pp. 162–169.
24.
go back to reference S.A. Gaponov, “Quasi-resonance excitation of stationary disturbances in compressible boundary layer,” Intern. J. Mech. 11, 120–127 (2017). S.A. Gaponov, “Quasi-resonance excitation of stationary disturbances in compressible boundary layer,” Intern. J. Mech. 11, 120–127 (2017).
25.
go back to reference S.A. Gaponov, G.V. Petrov, and B.V. Smorodskii, “Linear and nonlinear interaction of acoustic waves with a supersonic boundary layer,” Aeromekhanika Gazovaya Dinamika, No. 3, 21–30 (2002). S.A. Gaponov, G.V. Petrov, and B.V. Smorodskii, “Linear and nonlinear interaction of acoustic waves with a supersonic boundary layer,” Aeromekhanika Gazovaya Dinamika, No. 3, 21–30 (2002).
26.
go back to reference S.A. Gaponov, “Growth of disturbances in a supersonic boundary layer,” J. Appl. Mech. Techn. Phys. 32(6), 910–913 (1991).ADSCrossRef S.A. Gaponov, “Growth of disturbances in a supersonic boundary layer,” J. Appl. Mech. Techn. Phys. 32(6), 910–913 (1991).ADSCrossRef
27.
go back to reference S.A. Gaponov and N.M. Terekhova, “Stationary disturbances in a a supersonic boundary layer,” AeromekhanikaGazovayaDinamika No. 4, 35–42 (2002). S.A. Gaponov and N.M. Terekhova, “Stationary disturbances in a a supersonic boundary layer,” AeromekhanikaGazovayaDinamika No. 4, 35–42 (2002).
28.
go back to reference A. Thumm, W. Wolz, and H. Fasel, “Numerical simulation of spatially growing three-dimensional disturbance waves in compressible boundary layers,” in: Proc. IUTAM Symp. Toulouse, France, 1990, pp. 303–308. A. Thumm, W. Wolz, and H. Fasel, “Numerical simulation of spatially growing three-dimensional disturbance waves in compressible boundary layers,” in: Proc. IUTAM Symp. Toulouse, France, 1990, pp. 303–308.
29.
go back to reference P.J. Schmid and D.S. Henningson, “A new mechanism for rapid transition involving a pair of oblique waves,” Phys. Fluids A 4, 1986–1989 (1992).ADSMathSciNetCrossRef P.J. Schmid and D.S. Henningson, “A new mechanism for rapid transition involving a pair of oblique waves,” Phys. Fluids A 4, 1986–1989 (1992).ADSMathSciNetCrossRef
30.
go back to reference C.-L. Chang and M.R. Malik, “Oblique-mode breakdown and secondary instability in supersonic boundary layers,” J. Fluid Mech.273, 323–360 (1994).ADSCrossRef C.-L. Chang and M.R. Malik, “Oblique-mode breakdown and secondary instability in supersonic boundary layers,” J. Fluid Mech.273, 323–360 (1994).ADSCrossRef
31.
go back to reference W.S. Saric, R.B. Carillo, and M.S. Reibert, “Leading edge roughness as a transition control mechanism,” AIAA Paper No. 0781 (1998). W.S. Saric, R.B. Carillo, and M.S. Reibert, “Leading edge roughness as a transition control mechanism,” AIAA Paper No. 0781 (1998).
32.
go back to reference W.S. Saric and H.L. Reed, “Supersonic laminar flow control on swept wings using distributed roughness,” AIAA Paper No. 0147 (2002). W.S. Saric and H.L. Reed, “Supersonic laminar flow control on swept wings using distributed roughness,” AIAA Paper No. 0147 (2002).
33.
go back to reference N.V. Semionov and A.D. Kosinov, “Method of laminar-turbulent transition control of supersonic boundary layer on a swept wing,” ThermophysicsAeromechanics14(3), 337–341 (2007).ADSCrossRef N.V. Semionov and A.D. Kosinov, “Method of laminar-turbulent transition control of supersonic boundary layer on a swept wing,” ThermophysicsAeromechanics14(3), 337–341 (2007).ADSCrossRef
34.
go back to reference A.D.D. Craik, “Non-linear resonant instability in boundary layers,” J. Fluid Mech. 50, 393–413 (1971).ADSCrossRef A.D.D. Craik, “Non-linear resonant instability in boundary layers,” J. Fluid Mech. 50, 393–413 (1971).ADSCrossRef
35.
go back to reference S.A. Gaponov and I.I. Maslennikova, “Subharmonic instability of supersonic boundary layer,” ThermophysicsAeromechanics4(1), 3–12 (1997). S.A. Gaponov and I.I. Maslennikova, “Subharmonic instability of supersonic boundary layer,” ThermophysicsAeromechanics4(1), 3–12 (1997).
36.
go back to reference S.A. Gaponov, I.I. Maslennikova, and V.Yu. Tyushin, Nonlinear effect of external low-frequency acoustics on eigen-oscillations in a supersonic boundary layer,” J. Appl. Mech. Techn. Phys.40(5), 865–870 (1999).ADSCrossRef S.A. Gaponov, I.I. Maslennikova, and V.Yu. Tyushin, Nonlinear effect of external low-frequency acoustics on eigen-oscillations in a supersonic boundary layer,” J. Appl. Mech. Techn. Phys.40(5), 865–870 (1999).ADSCrossRef
Metadata
Title
Interaction of Stationary Disturbances with Tollmien—Schlichting Waves in a Supersonic Boundary Layer
Authors
S. A. Gaponov
N. M. Terekhova
Publication date
01-07-2020
Publisher
Pleiades Publishing
Published in
Fluid Dynamics / Issue 4/2020
Print ISSN: 0015-4628
Electronic ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462820040059

Other articles of this Issue 4/2020

Fluid Dynamics 4/2020 Go to the issue

Premium Partners