Skip to main content
Top
Published in:

19-07-2017

Interactive 3D simulation for fluid–structure interactions using dual coupled GPUs

Authors: Bob Zigon, Luoding Zhu, Fengguang Song

Published in: The Journal of Supercomputing | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The scope of this work involves the integration of high-speed parallel computation with interactive, 3D visualization of the lattice-Boltzmann-based immersed boundary method for fluid–structure interaction. An NVIDIA Tesla K40c is used for the computations, while an NVIDIA Quadro K5000 is used for 3D vector field visualization. The simulation can be paused at any time step so that the vector field can be explored. The density and placement of streamlines and glyphs are adjustable by the user, while panning and zooming is controlled by the mouse. The simulation can then be resumed. Unlike most scientific applications in computational fluid dynamics where visualization is performed after the computations, our software allows for real-time visualizations of the flow fields while the computations take place. To the best of our knowledge, such a tool on GPUs for FSI does not exist. Our software can facilitate debugging, enable observation of detailed local fields of flow and deformation while computing, and expedite identification of ‘correct’ parameter combinations in parametric studies for new phenomenon. Therefore, our software is expected to shorten the ‘time to solution’ process and expedite the scientific discoveries via scientific computing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Footnotes
1
Lenovo D30, 8 core E5-2609@2.4GHz, 32GB RAM, Windows 7/64.
 
Literature
1.
go back to reference Tian FB, Luo H, Zhu L, Lu XY (2010) Interaction between a flexible filament and a downstream rigid body. Phys Rev E 82:026301CrossRef Tian FB, Luo H, Zhu L, Lu XY (2010) Interaction between a flexible filament and a downstream rigid body. Phys Rev E 82:026301CrossRef
2.
go back to reference Espinha LC, Hoey DA, Fernandes PR, Rodrigues HC, Jacobs CR (2014) Oscillatory fluid flow influences primary cilia and microtubule mechanics. Cytoskeleton 71:435–445CrossRef Espinha LC, Hoey DA, Fernandes PR, Rodrigues HC, Jacobs CR (2014) Oscillatory fluid flow influences primary cilia and microtubule mechanics. Cytoskeleton 71:435–445CrossRef
3.
go back to reference Huang S, Li R, Li QS (2013) Numerical simulation on fluid–structure interaction of wind around super-tall building at high reynolds number conditions. Struct Eng Mech Int J 46:197–212CrossRef Huang S, Li R, Li QS (2013) Numerical simulation on fluid–structure interaction of wind around super-tall building at high reynolds number conditions. Struct Eng Mech Int J 46:197–212CrossRef
6.
go back to reference LeVeque RJ, Li ZL (1997) Immersed interface methods for Stokes flows with elastic boundaries or surface tension. SIAM J Sci Comput 18:709–735MathSciNetCrossRefMATH LeVeque RJ, Li ZL (1997) Immersed interface methods for Stokes flows with elastic boundaries or surface tension. SIAM J Sci Comput 18:709–735MathSciNetCrossRefMATH
7.
8.
go back to reference Wang XS (2006) From immersed boundary method to immersed continuum method. Int J Multiscale Comput Eng 4:127–145CrossRef Wang XS (2006) From immersed boundary method to immersed continuum method. Int J Multiscale Comput Eng 4:127–145CrossRef
10.
go back to reference Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349MathSciNetCrossRefMATH Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349MathSciNetCrossRefMATH
11.
go back to reference Glowinski R, Pan T, Periaux J (1994) A fictitious domain method for Dirichlet problem and applications. Comput Methods Appl Mech Eng 111:1994MathSciNetCrossRefMATH Glowinski R, Pan T, Periaux J (1994) A fictitious domain method for Dirichlet problem and applications. Comput Methods Appl Mech Eng 111:1994MathSciNetCrossRefMATH
12.
13.
go back to reference Cottet G-H, Maitre E (2006) A level set method for fluid–structure interactions with immersed surfaces. Math Models Methods Appl Sci 16:415–438MathSciNetCrossRefMATH Cottet G-H, Maitre E (2006) A level set method for fluid–structure interactions with immersed surfaces. Math Models Methods Appl Sci 16:415–438MathSciNetCrossRefMATH
14.
go back to reference Kim J-D, Li Y, Li X (2013) Simulation of parachute FSI using the front tracking method. J Fluids Struct 37:100–119CrossRef Kim J-D, Li Y, Li X (2013) Simulation of parachute FSI using the front tracking method. J Fluids Struct 37:100–119CrossRef
15.
go back to reference Peskin CS (1972) Flow patterns around heart valves: a digital computer method for solving the equations of motion, vol 378. PhD thesis. Physiology, Albert Einstein College of Medicine, University of Microfilms, pp 72–30 Peskin CS (1972) Flow patterns around heart valves: a digital computer method for solving the equations of motion, vol 378. PhD thesis. Physiology, Albert Einstein College of Medicine, University of Microfilms, pp 72–30
16.
go back to reference Peskin CS (1977) Flow patterns around heart valves; a numerical method. J Comput Phys 25:220CrossRef Peskin CS (1977) Flow patterns around heart valves; a numerical method. J Comput Phys 25:220CrossRef
18.
go back to reference Rosar ME, Peskin CS (2001) Fluid flow in collapsible elastic tubes: a three-dimensional numerical model. New York J Math 7:281–302MathSciNetMATH Rosar ME, Peskin CS (2001) Fluid flow in collapsible elastic tubes: a three-dimensional numerical model. New York J Math 7:281–302MathSciNetMATH
20.
go back to reference Lai MC, Peskin CS (2000) An immersed boundary method with formal second order accuracy and reduced numerical viscosity. J Comput Phys 160:705MathSciNetCrossRefMATH Lai MC, Peskin CS (2000) An immersed boundary method with formal second order accuracy and reduced numerical viscosity. J Comput Phys 160:705MathSciNetCrossRefMATH
21.
go back to reference Griffith BE, Peskin CS (2015) On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficient smooth problems. J Comput Phys 208:75–105CrossRefMATH Griffith BE, Peskin CS (2015) On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficient smooth problems. J Comput Phys 208:75–105CrossRefMATH
22.
go back to reference Zhu L, Peskin CS (2002) Simulation of a flexible flapping filament in a flowing soap film by the immersed boundary method. J Comput Phys 179:452–468MathSciNetCrossRefMATH Zhu L, Peskin CS (2002) Simulation of a flexible flapping filament in a flowing soap film by the immersed boundary method. J Comput Phys 179:452–468MathSciNetCrossRefMATH
23.
go back to reference Kim Y, Peskin CS (2007) Penalty immersed boundary method for an elastic boundary with mass. Phys Fluids 19:053103CrossRefMATH Kim Y, Peskin CS (2007) Penalty immersed boundary method for an elastic boundary with mass. Phys Fluids 19:053103CrossRefMATH
24.
26.
go back to reference Mori Y, Peskin CS (2008) Implicit second-order immersed boundary method with boundary mass. Comput Methods Appl Mech Eng 197:2049–2067MathSciNetCrossRefMATH Mori Y, Peskin CS (2008) Implicit second-order immersed boundary method with boundary mass. Comput Methods Appl Mech Eng 197:2049–2067MathSciNetCrossRefMATH
27.
go back to reference Hao J, Zhu L (2010) A lattice Boltzmann based implicit immersed boundary method for fluid–structure-interaction. Comput Math Appl 59:185–193MathSciNetCrossRefMATH Hao J, Zhu L (2010) A lattice Boltzmann based implicit immersed boundary method for fluid–structure-interaction. Comput Math Appl 59:185–193MathSciNetCrossRefMATH
28.
go back to reference Hao J, Zhu L (2011) A 3D implicit immersed boundary method with application. Theor Appl Mech Lett 1:062002CrossRef Hao J, Zhu L (2011) A 3D implicit immersed boundary method with application. Theor Appl Mech Lett 1:062002CrossRef
29.
30.
go back to reference Atzberger PJ, Kramer PR, Peskin CS (2006) A stochastic immersed boundary method for biological fluid dynamics at microscopic length scale. J Comput Phys 224:1255–1292CrossRefMATH Atzberger PJ, Kramer PR, Peskin CS (2006) A stochastic immersed boundary method for biological fluid dynamics at microscopic length scale. J Comput Phys 224:1255–1292CrossRefMATH
31.
go back to reference Zhu L, He G, Wang S, Miller L, Zhang X, You Q, Fang S (2011) An immersed boundary method based on the lattice Boltzmann approach in three dimensions with application. Comput Math Appl 61:3506–3518MathSciNetCrossRefMATH Zhu L, He G, Wang S, Miller L, Zhang X, You Q, Fang S (2011) An immersed boundary method based on the lattice Boltzmann approach in three dimensions with application. Comput Math Appl 61:3506–3518MathSciNetCrossRefMATH
32.
go back to reference Feng ZG, Michaelides EE (2005) Proteus: a direct forcing method in the simulations of particulate flows. J Comput Phys 202:20–51CrossRefMATH Feng ZG, Michaelides EE (2005) Proteus: a direct forcing method in the simulations of particulate flows. J Comput Phys 202:20–51CrossRefMATH
33.
go back to reference Tian FB, Luo H, Zhu L, Liao JC, Lu X-T (2011) An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments. J Comput Phys 230(19):7266–7283MathSciNetCrossRefMATH Tian FB, Luo H, Zhu L, Liao JC, Lu X-T (2011) An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments. J Comput Phys 230(19):7266–7283MathSciNetCrossRefMATH
34.
go back to reference Zhang C, Cheng Y, Zhu L, Wu J (2016) Accuracy improvement of the immersed boundary-lattice Boltzmann coupling scheme by iterative force correction. Comput Fluids 124:246–260MathSciNetCrossRef Zhang C, Cheng Y, Zhu L, Wu J (2016) Accuracy improvement of the immersed boundary-lattice Boltzmann coupling scheme by iterative force correction. Comput Fluids 124:246–260MathSciNetCrossRef
35.
go back to reference Wu J, Shu C (2009) Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications. J Comput Phys 228:1963–1979CrossRefMATH Wu J, Shu C (2009) Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications. J Comput Phys 228:1963–1979CrossRefMATH
36.
go back to reference Niu XD, Shu C, Chew YT, Peng Y (2006) A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Phys Lett A 354:173–182CrossRefMATH Niu XD, Shu C, Chew YT, Peng Y (2006) A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Phys Lett A 354:173–182CrossRefMATH
37.
go back to reference Wu J, Shu C, Zhang YH (2010) Simulation of incompressible viscous flows around moving objects by a variant of immersed boundary-lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow 62:327–354MathSciNetMATH Wu J, Shu C, Zhang YH (2010) Simulation of incompressible viscous flows around moving objects by a variant of immersed boundary-lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow 62:327–354MathSciNetMATH
38.
go back to reference Cheng Y, Zhu L, Zhang C (2014) Numerical study of stability and accuracy of the immersed boundary method coupled to the lattice Boltzmann BGK model. Commun Comput Phys 16:136–168MathSciNetCrossRefMATH Cheng Y, Zhu L, Zhang C (2014) Numerical study of stability and accuracy of the immersed boundary method coupled to the lattice Boltzmann BGK model. Commun Comput Phys 16:136–168MathSciNetCrossRefMATH
39.
go back to reference Cheng Y, Zhang H (2010) Immersed boundary method and lattice Boltzmann method coupled FSI simulation of mitral leaflet flow. Comput Fluids 39:871–881MathSciNetCrossRefMATH Cheng Y, Zhang H (2010) Immersed boundary method and lattice Boltzmann method coupled FSI simulation of mitral leaflet flow. Comput Fluids 39:871–881MathSciNetCrossRefMATH
40.
go back to reference Shu C, Liu N, Chew Y-T (2007) A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder. J Comput Phys 226:1607–1622CrossRefMATH Shu C, Liu N, Chew Y-T (2007) A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder. J Comput Phys 226:1607–1622CrossRefMATH
41.
go back to reference Liu N, Peng Y, Liang Y, Lu X (2012) Flow over a traveling wavy foil with a passively flapping flat plate. Phys Rev E 85:056316CrossRef Liu N, Peng Y, Liang Y, Lu X (2012) Flow over a traveling wavy foil with a passively flapping flat plate. Phys Rev E 85:056316CrossRef
42.
go back to reference Lee P, Griffith BE, Peskin CS (2010) The immersed boundary method for advection–electrodiffusion with implicit timestepping and local mesh refinement. J Comput Phys 229:5208–5227MathSciNetCrossRefMATH Lee P, Griffith BE, Peskin CS (2010) The immersed boundary method for advection–electrodiffusion with implicit timestepping and local mesh refinement. J Comput Phys 229:5208–5227MathSciNetCrossRefMATH
43.
go back to reference Fai TG, Griffith BE, Mori Y, Peskin CS (2014) Immersed boundary method for variable viscosity and variable density problems using fast constant-coefficient linear solvers II: theory. SIAM J Sci Comput 36:B589–B621MathSciNetCrossRefMATH Fai TG, Griffith BE, Mori Y, Peskin CS (2014) Immersed boundary method for variable viscosity and variable density problems using fast constant-coefficient linear solvers II: theory. SIAM J Sci Comput 36:B589–B621MathSciNetCrossRefMATH
44.
go back to reference Huang H, Sukop M, Lu X (2015) Multiphase lattice Boltzmann methods: theory and application. Wiley, HobokenCrossRef Huang H, Sukop M, Lu X (2015) Multiphase lattice Boltzmann methods: theory and application. Wiley, HobokenCrossRef
45.
go back to reference Guo Z, Shu C (2013) Lattice Boltzmann method and its applications in engineering. World Scientific, SingaporeCrossRefMATH Guo Z, Shu C (2013) Lattice Boltzmann method and its applications in engineering. World Scientific, SingaporeCrossRefMATH
46.
go back to reference Qian YH (1990) Lattice gas and lattice kinetic theory applied to the Navier-Stokes equations, PhD thesis. University Pierre et Marie Curie, Paris (1990) Qian YH (1990) Lattice gas and lattice kinetic theory applied to the Navier-Stokes equations, PhD thesis. University Pierre et Marie Curie, Paris (1990)
47.
go back to reference Hou S, Zou Q, Chen S, Doolen G, Cogley A (1995) Simulation of cavity flow by the lattice Boltzmann method. J Comput Phys 118:329CrossRefMATH Hou S, Zou Q, Chen S, Doolen G, Cogley A (1995) Simulation of cavity flow by the lattice Boltzmann method. J Comput Phys 118:329CrossRefMATH
48.
go back to reference He X, Chen S, Zhang R (1999) A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J Comput Phys 152:642–663MathSciNetCrossRefMATH He X, Chen S, Zhang R (1999) A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J Comput Phys 152:642–663MathSciNetCrossRefMATH
49.
go back to reference Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models—an introduction. Springer, BerlinCrossRefMATH Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models—an introduction. Springer, BerlinCrossRefMATH
50.
go back to reference Succi S (2001) The lattice Boltzmann equation. Oxford Univ Press, OxfordMATH Succi S (2001) The lattice Boltzmann equation. Oxford Univ Press, OxfordMATH
51.
go back to reference Luo LS (1998) Unified theory of the lattice Boltzmann models for nonideal gases. Phys Rev Lett 81:1618CrossRef Luo LS (1998) Unified theory of the lattice Boltzmann models for nonideal gases. Phys Rev Lett 81:1618CrossRef
53.
go back to reference Valero-Lara P, Igual FD, Prieto-Matías Pinelli A, Favier J (2015) Accelerating fluid–solid simulations (lattice-Boltzmann & immersed-boundary) on heterogeneous architectures. J Comput Sci 10:249–261CrossRef Valero-Lara P, Igual FD, Prieto-Matías Pinelli A, Favier J (2015) Accelerating fluid–solid simulations (lattice-Boltzmann & immersed-boundary) on heterogeneous architectures. J Comput Sci 10:249–261CrossRef
54.
go back to reference Mawson M, Valero-Lara P, Favier J, Pinelli A, Revell A (2013) Fast fluid–structure interaction using lattice Boltzmann and immersed boundary methods. In: NVIDIA GPU Conference Mawson M, Valero-Lara P, Favier J, Pinelli A, Revell A (2013) Fast fluid–structure interaction using lattice Boltzmann and immersed boundary methods. In: NVIDIA GPU Conference
56.
go back to reference Bhaniramka P, Demange Y (2002) OpenGL volumizer: a toolkit for high quality volume rendering of large data sets. In: 2002 Symposium on Volume Visualization and Graphics, pp 45–53 Bhaniramka P, Demange Y (2002) OpenGL volumizer: a toolkit for high quality volume rendering of large data sets. In: 2002 Symposium on Volume Visualization and Graphics, pp 45–53
57.
go back to reference Ahrens J, Geveci B, Law C (2005) ParaView: an end user tool for large data visualization. Visualization Handbook, Elsevier. ISBN 13:978-0123875822 Ahrens J, Geveci B, Law C (2005) ParaView: an end user tool for large data visualization. Visualization Handbook, Elsevier. ISBN 13:978-0123875822
58.
go back to reference Childs H, Brugger E, Whitlock B, Meredith J, Ahern S, Pugmire D, Biagas K, Miller M, Harrison C, Weber GH, Krishnan H, Fogal T, Sanderson A, Garth C, Bethel E, Camp D, Rübel O, Durant M, Favre JM, Navrátil P (2012) VisIt: an end-user tool for visualizing and analyzing very large data. In: High performance visualization—enabling extreme-scale scientific insight, pp 357–372 Childs H, Brugger E, Whitlock B, Meredith J, Ahern S, Pugmire D, Biagas K, Miller M, Harrison C, Weber GH, Krishnan H, Fogal T, Sanderson A, Garth C, Bethel E, Camp D, Rübel O, Durant M, Favre JM, Navrátil P (2012) VisIt: an end-user tool for visualizing and analyzing very large data. In: High performance visualization—enabling extreme-scale scientific insight, pp 357–372
59.
go back to reference Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases, I; small amplitude process in charged and neutral one-component system. Phys Rev 94:511CrossRefMATH Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases, I; small amplitude process in charged and neutral one-component system. Phys Rev 94:511CrossRefMATH
60.
go back to reference Bailey M, Cunningham S (2012) Graphics shaders theory and practice, 2nd edn. CRC Press, Boca Raton Bailey M, Cunningham S (2012) Graphics shaders theory and practice, 2nd edn. CRC Press, Boca Raton
61.
go back to reference Weiskopf D (2006) GPU based interactive visualization techniques. Springer, BerlinMATH Weiskopf D (2006) GPU based interactive visualization techniques. Springer, BerlinMATH
62.
go back to reference Telea AC (2015) Data visualization principles and practice, 2nd edn. CRC Press, Boca Raton Telea AC (2015) Data visualization principles and practice, 2nd edn. CRC Press, Boca Raton
63.
go back to reference Yu H, Wang C, Ma KL (2007) Parallel hierarchical visualization of large time-varying 3D vector fields. In: Proceedings of the 2007 ACM/IEEE conference on Supercomputing, ACM, Nov 16, p 24 Yu H, Wang C, Ma KL (2007) Parallel hierarchical visualization of large time-varying 3D vector fields. In: Proceedings of the 2007 ACM/IEEE conference on Supercomputing, ACM, Nov 16, p 24
65.
go back to reference Spencer B, Laramee RS, Chen G, Zhang E (2009) Evenly space streamlines for surfaces: an image based approach. Comput Graph Forum 28:1618–1631CrossRef Spencer B, Laramee RS, Chen G, Zhang E (2009) Evenly space streamlines for surfaces: an image based approach. Comput Graph Forum 28:1618–1631CrossRef
66.
go back to reference Max N, Becker B, Crawfis R (1993) Flow volumes for interactive vector field visualization. In: Proceedings Visualization ’93, pp 19–24 Max N, Becker B, Crawfis R (1993) Flow volumes for interactive vector field visualization. In: Proceedings Visualization ’93, pp 19–24
Metadata
Title
Interactive 3D simulation for fluid–structure interactions using dual coupled GPUs
Authors
Bob Zigon
Luoding Zhu
Fengguang Song
Publication date
19-07-2017
Publisher
Springer US
Published in
The Journal of Supercomputing / Issue 1/2018
Print ISSN: 0920-8542
Electronic ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-017-2103-x

Premium Partner