Skip to main content
Top

2015 | OriginalPaper | Chapter

Interactive Proofs with Approximately Commuting Provers

Authors : Matthew Coudron, Thomas Vidick

Published in: Automata, Languages, and Programming

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

The class

$$\mathrm {MIP}^*$$

MIP

of promise problems that can be decided through an interactive proof system with multiple entangled provers provides a complexity-theoretic framework for the exploration of the nonlocal properties of entanglement. Very little is known in terms of the power of this class. The only proposed approach for establishing upper bounds is based on a hierarchy of semidefinite programs introduced independently by Pironio et al. and Doherty et al. in 2006. This hierarchy converges to a value, the field-theoretic value, that is only known to coincide with the provers’ maximum success probability in a given proof system under a plausible but difficult mathematical conjecture, Connes’ embedding conjecture. No bounds on the rate of convergence are known.

We introduce a rounding scheme for the hierarchy, establishing that any solution to its

$$N$$

N

-th level can be mapped to a strategy for the provers in which measurement operators associated with distinct provers have pairwise commutator bounded by

$$O(\ell ^2/\sqrt{N})$$

O

(

2

/

N

)

in operator norm, where

$$\ell $$

is the number of possible answers per prover.

Our rounding scheme motivates the introduction of a variant of quantum multiprover interactive proof systems, called

$$\mathrm {MIP}_\delta ^*$$

MIP

δ

, in which the soundness property is required to hold against provers allowed to operate on the same Hilbert space as long as the commutator of operations performed by distinct provers has norm at most

$$\delta $$

δ

. Our rounding scheme implies the upper bound

$$\mathrm {MIP}_\delta ^* \subseteq \mathrm {DTIME}(\exp (\exp ({{\mathrm{poly}}})/\delta ^2))$$

MIP

δ

DTIME

(

exp

(

exp

(

poly

)

/

δ

2

)

)

. In terms of lower bounds we establish that

$$\mathrm {MIP}^*_{2^{-{{\mathrm{poly}}}}}$$

MIP

2

-

poly

contains

$$\mathrm {NEXP}$$

NEXP

with completeness

$$1$$

1

and soundness

$$1-2^{-{{\mathrm{poly}}}}$$

1

-

2

-

poly

. We discuss connections with the mathematical literature on approximate commutation and applications to device-independent cryptography.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Metadata
Title
Interactive Proofs with Approximately Commuting Provers
Authors
Matthew Coudron
Thomas Vidick
Copyright Year
2015
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-47672-7_29

Premium Partner