Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2019 | OriginalPaper | Chapter

Interdependence Model for Multi-label Classification

Authors: Kosuke Yoshimura, Tomoaki Iwase, Yukino Baba, Hisashi Kashima

Published in: Artificial Neural Networks and Machine Learning – ICANN 2019: Text and Time Series

Publisher: Springer International Publishing

share
SHARE

Abstract

The multi-label classification problem is a supervised learning problem that aims to predict multiple labels for each data instance. One of the key issues in designing multi-label learning approaches is how to incorporate dependencies among different labels. In this study, we propose a new approach called the interdependence model, which consists of a set of single-label predictors each of which predicts a particular label using the other labels. The proposed model can directly consider label interdependencies by reusing arbitrary conventional probabilistic models for single-label classification. We consider three prediction methods and one accelerated method for making predictions with the interdependence model. Experiments show the superior prediction performance of the proposed methods in several evaluation metrics, especially when there is a large number of candidate labels or when labels are partially given in the test phase.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Literature
1.
go back to reference Balasubramanian, K., Lebanon, G.: The landmark selection method for multiple output prediction. In: Proceedings of the 29th International Conference on Machine Learning, pp. 283–290 (2012) Balasubramanian, K., Lebanon, G.: The landmark selection method for multiple output prediction. In: Proceedings of the 29th International Conference on Machine Learning, pp. 283–290 (2012)
2.
go back to reference Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse local embeddings for extreme multi-label classification. In: Advances in Neural Information Processing Systems, vol. 28, pp. 730–738 (2015) Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse local embeddings for extreme multi-label classification. In: Advances in Neural Information Processing Systems, vol. 28, pp. 730–738 (2015)
5.
go back to reference Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems, vol. 14, pp. 681–687 (2001) Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems, vol. 14, pp. 681–687 (2001)
8.
go back to reference Hsu, D., Kakade, S.M., Langford, J., Zhang, T.: Multi-label prediction via compressed sensing. In: Advances in Neural Information Processing Systems, vol. 22, pp. 772–780 (2009) Hsu, D., Kakade, S.M., Langford, J., Zhang, T.: Multi-label prediction via compressed sensing. In: Advances in Neural Information Processing Systems, vol. 22, pp. 772–780 (2009)
10.
go back to reference Pestian, J.P., et al.: A shared task involving multi-label classification of clinical free text. In: Proceedings of the Workshop on BioNLP 2007: Biological, Translational, and Clinical Language Processing, pp. 97–104 (2007) Pestian, J.P., et al.: A shared task involving multi-label classification of clinical free text. In: Proceedings of the Workshop on BioNLP 2007: Biological, Translational, and Clinical Language Processing, pp. 97–104 (2007)
21.
go back to reference Zhang, Y., Schneider, J.: Multi-label output codes using canonical correlation analysis. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, vol. 15, pp. 873–882 (2011) Zhang, Y., Schneider, J.: Multi-label output codes using canonical correlation analysis. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, vol. 15, pp. 873–882 (2011)
Metadata
Title
Interdependence Model for Multi-label Classification
Authors
Kosuke Yoshimura
Tomoaki Iwase
Yukino Baba
Hisashi Kashima
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-30490-4_6

Premium Partner