Skip to main content
Top

2019 | OriginalPaper | Chapter

Interdependence Model for Multi-label Classification

Authors : Kosuke Yoshimura, Tomoaki Iwase, Yukino Baba, Hisashi Kashima

Published in: Artificial Neural Networks and Machine Learning – ICANN 2019: Text and Time Series

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The multi-label classification problem is a supervised learning problem that aims to predict multiple labels for each data instance. One of the key issues in designing multi-label learning approaches is how to incorporate dependencies among different labels. In this study, we propose a new approach called the interdependence model, which consists of a set of single-label predictors each of which predicts a particular label using the other labels. The proposed model can directly consider label interdependencies by reusing arbitrary conventional probabilistic models for single-label classification. We consider three prediction methods and one accelerated method for making predictions with the interdependence model. Experiments show the superior prediction performance of the proposed methods in several evaluation metrics, especially when there is a large number of candidate labels or when labels are partially given in the test phase.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Balasubramanian, K., Lebanon, G.: The landmark selection method for multiple output prediction. In: Proceedings of the 29th International Conference on Machine Learning, pp. 283–290 (2012) Balasubramanian, K., Lebanon, G.: The landmark selection method for multiple output prediction. In: Proceedings of the 29th International Conference on Machine Learning, pp. 283–290 (2012)
2.
go back to reference Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse local embeddings for extreme multi-label classification. In: Advances in Neural Information Processing Systems, vol. 28, pp. 730–738 (2015) Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse local embeddings for extreme multi-label classification. In: Advances in Neural Information Processing Systems, vol. 28, pp. 730–738 (2015)
5.
go back to reference Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems, vol. 14, pp. 681–687 (2001) Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems, vol. 14, pp. 681–687 (2001)
7.
go back to reference Goncalves, E.C., Plastino, A., Freitas, A.A.: A genetic algorithm for optimizing the label ordering in multi-label classifier chains. In: Proceedings of the 25th International Conference on Tools with Artificial Intelligence, pp. 469–476 (2013). https://doi.org/10.1109/ICTAI.2013.76 Goncalves, E.C., Plastino, A., Freitas, A.A.: A genetic algorithm for optimizing the label ordering in multi-label classifier chains. In: Proceedings of the 25th International Conference on Tools with Artificial Intelligence, pp. 469–476 (2013). https://​doi.​org/​10.​1109/​ICTAI.​2013.​76
8.
go back to reference Hsu, D., Kakade, S.M., Langford, J., Zhang, T.: Multi-label prediction via compressed sensing. In: Advances in Neural Information Processing Systems, vol. 22, pp. 772–780 (2009) Hsu, D., Kakade, S.M., Langford, J., Zhang, T.: Multi-label prediction via compressed sensing. In: Advances in Neural Information Processing Systems, vol. 22, pp. 772–780 (2009)
10.
go back to reference Pestian, J.P., et al.: A shared task involving multi-label classification of clinical free text. In: Proceedings of the Workshop on BioNLP 2007: Biological, Translational, and Clinical Language Processing, pp. 97–104 (2007) Pestian, J.P., et al.: A shared task involving multi-label classification of clinical free text. In: Proceedings of the Workshop on BioNLP 2007: Biological, Translational, and Clinical Language Processing, pp. 97–104 (2007)
13.
21.
go back to reference Zhang, Y., Schneider, J.: Multi-label output codes using canonical correlation analysis. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, vol. 15, pp. 873–882 (2011) Zhang, Y., Schneider, J.: Multi-label output codes using canonical correlation analysis. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, vol. 15, pp. 873–882 (2011)
Metadata
Title
Interdependence Model for Multi-label Classification
Authors
Kosuke Yoshimura
Tomoaki Iwase
Yukino Baba
Hisashi Kashima
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-30490-4_6

Premium Partner