Skip to main content
Top
Published in: Journal of Materials Science 17/2014

01-09-2014

Interface modification of clay and graphene platelets reinforced epoxy nanocomposites: a comparative study

Authors: Izzuddin Zaman, Bukhari Manshoor, Amir Khalid, Qingshi Meng, Sherif Araby

Published in: Journal of Materials Science | Issue 17/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The interface between the matrix phase and dispersed phase of a composite plays a critical role in influencing its properties. However, the intricate mechanisms of interface are not fully understood, and polymer nanocomposites are no exception. This study compares the fabrication, morphology, and mechanical and thermal properties of epoxy nanocomposites tuned by clay layers (denoted as m-clay) and graphene platelets (denoted as m-GP). It was found that a chemical modification, layer expansion and dispersion of filler within the epoxy matrix resulted in an improved interface between the filler material and epoxy matrix. This was confirmed by Fourier transform infrared spectroscopy and transmission electron microscope. The enhanced interface led to improved mechanical properties (i.e. stiffness modulus, fracture toughness) and higher glass transition temperatures (T g) compared with neat epoxy. At 4 wt% m-GP, the critical strain energy release rate G 1c of neat epoxy improved by 240 % from 179.1 to 608.6 J/m2 and T g increased from 93.7 to 106.4 °C. In contrast to m-clay, which at 4 wt%, only improved the G 1c by 45 % and T g by 7.1 %. The higher level of improvement offered by m-GP is attributed to the strong interaction of graphene sheets with epoxy because the covalent bonds between the carbon atoms of graphene sheets are much stronger than silicon-based clay.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Njuguna J, Pielichowski K, Alcock JR (2007) Epoxy-based fibre reinforced nanocomposites. Adv Eng Mater 9:835–847CrossRef Njuguna J, Pielichowski K, Alcock JR (2007) Epoxy-based fibre reinforced nanocomposites. Adv Eng Mater 9:835–847CrossRef
2.
go back to reference Becker O, Simon GP (2005) Epoxy layered silicate nanocomposites. Adv Polym Sci 179:29–82CrossRef Becker O, Simon GP (2005) Epoxy layered silicate nanocomposites. Adv Polym Sci 179:29–82CrossRef
3.
go back to reference Kinloch AJ, Taylor AC (2003) Mechanical and fracture properties of epoxy/inorganic micro- and nano-composites. J Mater Sci Lett 22:1439–1441CrossRef Kinloch AJ, Taylor AC (2003) Mechanical and fracture properties of epoxy/inorganic micro- and nano-composites. J Mater Sci Lett 22:1439–1441CrossRef
4.
go back to reference Ma J, La LTB, Zaman I et al (2011) Fabrication, structure and properties of epoxy/metal nanocomposites. Macromol Mater Eng 296:465–474CrossRef Ma J, La LTB, Zaman I et al (2011) Fabrication, structure and properties of epoxy/metal nanocomposites. Macromol Mater Eng 296:465–474CrossRef
5.
go back to reference Amdouni N, Sautereau H, Gerard JF (1992) Epoxy composites based on glass-beads. 2. Mechanical properties. J Appl Polym Sci 46:1723–1735CrossRef Amdouni N, Sautereau H, Gerard JF (1992) Epoxy composites based on glass-beads. 2. Mechanical properties. J Appl Polym Sci 46:1723–1735CrossRef
6.
go back to reference Ma J, Mo M-S, Du X-S, Dai S-R, Luck I (2008) Study of epoxy toughened by in situ formed rubber nanoparticles. J Appl Polym Sci 110:304–312CrossRef Ma J, Mo M-S, Du X-S, Dai S-R, Luck I (2008) Study of epoxy toughened by in situ formed rubber nanoparticles. J Appl Polym Sci 110:304–312CrossRef
7.
go back to reference Kinloch A, Mohammed RD, Taylor AC, Eager C, Sprenger S, Egan D (2006) The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers. J Mater Sci 41:1293CrossRef Kinloch A, Mohammed RD, Taylor AC, Eager C, Sprenger S, Egan D (2006) The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers. J Mater Sci 41:1293CrossRef
8.
go back to reference Ozturk A, Kaynak C, Tincer T (2001) Effects of liquid rubber modification on the behaviour of epoxy resin. Eur Polym J 37:2353–2363CrossRef Ozturk A, Kaynak C, Tincer T (2001) Effects of liquid rubber modification on the behaviour of epoxy resin. Eur Polym J 37:2353–2363CrossRef
9.
go back to reference Choi J, Yee AF, Laine RM (2004) Toughening of cubic silsesquioxane epoxy nanocomposites using core shell rubber particles; a three component hybrid system. Macromolecules 37:3267–3276CrossRef Choi J, Yee AF, Laine RM (2004) Toughening of cubic silsesquioxane epoxy nanocomposites using core shell rubber particles; a three component hybrid system. Macromolecules 37:3267–3276CrossRef
10.
go back to reference Jia XT, Campos-Delgado J, Terrones M, Meunier V, Dresselhaus MS (2011) Graphene edges: a review of their fabrication and characterization. Nanoscale 3:86–95CrossRef Jia XT, Campos-Delgado J, Terrones M, Meunier V, Dresselhaus MS (2011) Graphene edges: a review of their fabrication and characterization. Nanoscale 3:86–95CrossRef
11.
go back to reference Goettler LA, Lee KY, Thakkar H (2007) Layered silicate reinforced polymer nanocomposites: development and applications. Polym Rev 47:291–317CrossRef Goettler LA, Lee KY, Thakkar H (2007) Layered silicate reinforced polymer nanocomposites: development and applications. Polym Rev 47:291–317CrossRef
12.
go back to reference Ratna D, Manoj N, Varley R, Singh Raman R, Simon GP (2003) Clay reinforced epoxy nanocomposites. Polym Int 52:1403–1407CrossRef Ratna D, Manoj N, Varley R, Singh Raman R, Simon GP (2003) Clay reinforced epoxy nanocomposites. Polym Int 52:1403–1407CrossRef
13.
go back to reference Zaman I, Manshoor B, Khalid A, Araby S (2014) From clay to graphene for polymer nanocomposites—a survey. J Polym Res 21:429CrossRef Zaman I, Manshoor B, Khalid A, Araby S (2014) From clay to graphene for polymer nanocomposites—a survey. J Polym Res 21:429CrossRef
14.
go back to reference Morvan M, Espinat D, Lambard J, Zemb T (2002) Ultrasmall-angle and small-angle X-ray scattering of smectite clay suspensions. Colloids Surf A 82:193–203CrossRef Morvan M, Espinat D, Lambard J, Zemb T (2002) Ultrasmall-angle and small-angle X-ray scattering of smectite clay suspensions. Colloids Surf A 82:193–203CrossRef
15.
go back to reference Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
16.
go back to reference Ma J, Xu J, Ren JH, Yu ZZ, Mai YW (2003) A new approach to polymer/montmorillonite nanocomposites. Polymer 44:4619–4624CrossRef Ma J, Xu J, Ren JH, Yu ZZ, Mai YW (2003) A new approach to polymer/montmorillonite nanocomposites. Polymer 44:4619–4624CrossRef
17.
go back to reference Zaman I, Phan TT, Kuan H-C et al (2011) Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 52:1603–1611CrossRef Zaman I, Phan TT, Kuan H-C et al (2011) Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 52:1603–1611CrossRef
18.
go back to reference Zaman I, Le Q, Kuan HC et al (2011) Interface-tuned epoxy/clay nanocomposites. Polymer 52:497–504CrossRef Zaman I, Le Q, Kuan HC et al (2011) Interface-tuned epoxy/clay nanocomposites. Polymer 52:497–504CrossRef
19.
go back to reference Zaman I, Kuan HC, Meng Q et al (2012) A facile approach to chemically modified graphene and its polymer nanocomposites. Adv Funct Mater 22:2735–2743CrossRef Zaman I, Kuan HC, Meng Q et al (2012) A facile approach to chemically modified graphene and its polymer nanocomposites. Adv Funct Mater 22:2735–2743CrossRef
20.
go back to reference Araby S, Zaman I, Meng Q et al (2013) Melt compounding with graphene to develop functional, high-performance elastomers. Nanotechnology 24:165601–165614CrossRef Araby S, Zaman I, Meng Q et al (2013) Melt compounding with graphene to develop functional, high-performance elastomers. Nanotechnology 24:165601–165614CrossRef
21.
go back to reference Messersmith PB, Giannelis EP (1994) Synthesis and characterisation of layered silicate–epoxy nanocomposites. Chem Mater 6:1719–1725CrossRef Messersmith PB, Giannelis EP (1994) Synthesis and characterisation of layered silicate–epoxy nanocomposites. Chem Mater 6:1719–1725CrossRef
22.
go back to reference Miller SG, Bauer JL, Maryanski MJ et al (2010) Characterization of epoxy functionalized graphite nanoparticles and the physical properties of epoxy matrix nanocomposites. Compos Sci Technol 70:1120–1125CrossRef Miller SG, Bauer JL, Maryanski MJ et al (2010) Characterization of epoxy functionalized graphite nanoparticles and the physical properties of epoxy matrix nanocomposites. Compos Sci Technol 70:1120–1125CrossRef
23.
go back to reference Choi JS, Lim ST, Choi HJ, Pozsgay A, Szazdi L (2006) Effect of interfacial interaction on the structure and rheological properties of polyamide-6/clay nanocomposites. Compos Interfaces 13:773–782CrossRef Choi JS, Lim ST, Choi HJ, Pozsgay A, Szazdi L (2006) Effect of interfacial interaction on the structure and rheological properties of polyamide-6/clay nanocomposites. Compos Interfaces 13:773–782CrossRef
24.
go back to reference Gorga RE, Lau KKS, Gleason KK, Cohen RE (2006) The importance of interfacial design at the carbon nanotube/polymer composite interface. J Appl Polym Sci 102:1413–1418CrossRef Gorga RE, Lau KKS, Gleason KK, Cohen RE (2006) The importance of interfacial design at the carbon nanotube/polymer composite interface. J Appl Polym Sci 102:1413–1418CrossRef
25.
go back to reference Ma J, Meng Q, Michelmore A et al (2013) Covalently bonded interfaces for polymer/graphene composites. J Mater Chem A 1:4255–4264CrossRef Ma J, Meng Q, Michelmore A et al (2013) Covalently bonded interfaces for polymer/graphene composites. J Mater Chem A 1:4255–4264CrossRef
26.
go back to reference Ma J, Meng Q, Zaman I et al (2014) Development of polymer composites using modified, high-structural integrity graphene platelets. Compos Sci Technol 91:82–90CrossRef Ma J, Meng Q, Zaman I et al (2014) Development of polymer composites using modified, high-structural integrity graphene platelets. Compos Sci Technol 91:82–90CrossRef
27.
go back to reference Cravotto G, Cintas P (2010) Sonication-assisted fabrication and post-synthetic modifications of graphene-like materials. Chem Eur J 16:5246–5259CrossRef Cravotto G, Cintas P (2010) Sonication-assisted fabrication and post-synthetic modifications of graphene-like materials. Chem Eur J 16:5246–5259CrossRef
28.
go back to reference Meng Q, Zaman I, Hannam JR et al (2011) Improvement of adhesive toughness measurement. Polym Test 30:243–250CrossRef Meng Q, Zaman I, Hannam JR et al (2011) Improvement of adhesive toughness measurement. Polym Test 30:243–250CrossRef
29.
go back to reference Katti KS, Sikdar D, Katti DR, Ghosh P, Verma D (2006) Molecular interactions in intercalated organically modified clay and clay–polycaprolactam nanocomposites: experiments and modeling. Polymer 47:403–414CrossRef Katti KS, Sikdar D, Katti DR, Ghosh P, Verma D (2006) Molecular interactions in intercalated organically modified clay and clay–polycaprolactam nanocomposites: experiments and modeling. Polymer 47:403–414CrossRef
31.
go back to reference McMurry J (2004) Organic chemistry. Brooks/Cole, California McMurry J (2004) Organic chemistry. Brooks/Cole, California
32.
go back to reference Kuan HC, Chuang WP, Ma CCM, Chiang CL, Wu HL (2005) Synthesis and characterization of a clay/waterborne polyurethane nanocomposite. J Mater Sci 40:179–185CrossRef Kuan HC, Chuang WP, Ma CCM, Chiang CL, Wu HL (2005) Synthesis and characterization of a clay/waterborne polyurethane nanocomposite. J Mater Sci 40:179–185CrossRef
33.
go back to reference Zhang K, Wang L, Wang F, Wang G, Li Z (2004) Preparation and characterization of modified-clay-reinforced and toughened epoxy–resin nanocomposites. J Appl Polym Sci 91:2649–2652CrossRef Zhang K, Wang L, Wang F, Wang G, Li Z (2004) Preparation and characterization of modified-clay-reinforced and toughened epoxy–resin nanocomposites. J Appl Polym Sci 91:2649–2652CrossRef
34.
go back to reference Gass MH, Bangert U, Bleloch AL, Wang P, Nair RR, Geim AK (2008) Free-standing graphene at atomic resolution. Nat Nanotechnol 3:676–681CrossRef Gass MH, Bangert U, Bleloch AL, Wang P, Nair RR, Geim AK (2008) Free-standing graphene at atomic resolution. Nat Nanotechnol 3:676–681CrossRef
35.
go back to reference Kornmann X, Lindberg H (2001) Synthesis of epoxy–clay nanocomposites: influence of the nature of the curing agent on structure. Polymer 42:4493–4499CrossRef Kornmann X, Lindberg H (2001) Synthesis of epoxy–clay nanocomposites: influence of the nature of the curing agent on structure. Polymer 42:4493–4499CrossRef
36.
go back to reference Le QH, Kuan H-C, Dai J-B, Zaman I, Luong L, Ma J (2010) Structure–property relations of 55 nm particle-toughened epoxy. Polymer 51:4867–4879CrossRef Le QH, Kuan H-C, Dai J-B, Zaman I, Luong L, Ma J (2010) Structure–property relations of 55 nm particle-toughened epoxy. Polymer 51:4867–4879CrossRef
Metadata
Title
Interface modification of clay and graphene platelets reinforced epoxy nanocomposites: a comparative study
Authors
Izzuddin Zaman
Bukhari Manshoor
Amir Khalid
Qingshi Meng
Sherif Araby
Publication date
01-09-2014
Publisher
Springer US
Published in
Journal of Materials Science / Issue 17/2014
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8296-y

Other articles of this Issue 17/2014

Journal of Materials Science 17/2014 Go to the issue

Premium Partners