Skip to main content
Top
Published in: Mechanics of Composite Materials 3/2023

30-06-2023

Interfacial Engineering of CFRP Composites and Temperature Effects: A Review

Authors: A. De Leon, R. D. Sweat

Published in: Mechanics of Composite Materials | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbon fiber-reinforced polymer (CFRP) composites are widely used in many industries due to their outstanding multifunctional properties. The durability and performance of these materials depend on their mechanical properties and fiber/matrix interface. A good interface ensures not only efficient load transfer but also long-term safety. Studies demonstrate that composites are affected by moisture, ultraviolet irradiation, and cyclic temperature variations. This review focuses on the performance of CFRP at high and cryogenic temperatures. There is a critical need to characterize and predict composite interfacial performance under different temperature fluxes. This paper presents an overview of the fiber-matrix interface at different temperatures and strain rates. First, interfacial mechanisms, mechanical tests, physical and chemical characterization techniques, and numerical simulations are introduced. Then, the effect of high temperatures, low temperatures, and strain rates on the composite’s interface are discussed. Interfacial adhesion is quantified utilizing different experimental techniques, including Iosipescu, short beam shear, fiber pullout/pushout, and fragmentation tests. While these report different interfacial strength values, factors that affect this variability are studied. High temperatures greatly decrease the interface strength of polymer matrix composites (PMCs) at temperatures above the resin’s glass transition temperature (Tg). Cryogenic temperatures create micro-cracks between the fiber and polymer matrix. While mechanical tests, morphology observations, and chemical analysis help explain interfacial debonding after testing, these cannot explain the debonding process during testing. Simulation techniques add to the fundamentals of mechanics and predict the interfacial debonding process, and the methods to predict interfacial failure in extreme environments are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. S. Bedi, B. Billing, and P. Agnihotri, “Interfacial shear strength of carbon nanotubes based hybrid composites: effect of loading rate,” Frattura ed Integrità Strutturale, 13, 571-576 (2019).CrossRef H. S. Bedi, B. Billing, and P. Agnihotri, “Interfacial shear strength of carbon nanotubes based hybrid composites: effect of loading rate,” Frattura ed Integrità Strutturale, 13, 571-576 (2019).CrossRef
2.
go back to reference P. D. Pastuszak and A. Muc, “Application of composite materials in modern constructions,” KEM, 542, 119-129 (2013).CrossRef P. D. Pastuszak and A. Muc, “Application of composite materials in modern constructions,” KEM, 542, 119-129 (2013).CrossRef
3.
go back to reference S. Huang, Q. Fu, L. Yan, and B. Kasal, “Characterization of interfacial properties between fibre and polymer matrix in composite materials - A critical review,” J. Mater. Research and Technol., 13, 1441-1484 (2021).CrossRef S. Huang, Q. Fu, L. Yan, and B. Kasal, “Characterization of interfacial properties between fibre and polymer matrix in composite materials - A critical review,” J. Mater. Research and Technol., 13, 1441-1484 (2021).CrossRef
4.
go back to reference X. Zhang, X. Fan, C. Yan, H. Li, Y. Zhu, X. Li, and L. Yu, “Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide,” ACS Appl. Mater. Interfaces, 4, 1543-1552 (2012).CrossRef X. Zhang, X. Fan, C. Yan, H. Li, Y. Zhu, X. Li, and L. Yu, “Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide,” ACS Appl. Mater. Interfaces, 4, 1543-1552 (2012).CrossRef
5.
go back to reference F. Teklal, A. Djebbar, S. Allaoui, G. Hivet, Y. Joliff, and B. Kacimi, “A review of analytical models to describe pull-out behavior - Fiber/matrix adhesion,” Compos. Struct., 201, 791-815 (2018).CrossRef F. Teklal, A. Djebbar, S. Allaoui, G. Hivet, Y. Joliff, and B. Kacimi, “A review of analytical models to describe pull-out behavior - Fiber/matrix adhesion,” Compos. Struct., 201, 791-815 (2018).CrossRef
6.
go back to reference S. Zhandarov, “Characterization of fiber/matrix interface strength: applicability of different tests, approaches and parameters,” Compos. Sci. and Technol., 65, 149-160 (2005).CrossRef S. Zhandarov, “Characterization of fiber/matrix interface strength: applicability of different tests, approaches and parameters,” Compos. Sci. and Technol., 65, 149-160 (2005).CrossRef
7.
go back to reference A. Molazemhosseini, H. Tourani, M. R. Naimi-Jamal, and A. Khavandi, “Nanoindentation and nanoscratching responses of PEEK based hybrid composites reinforced with short carbon fibers and nano-silica,” Polymer Testing, 32, 525-534 (2013).CrossRef A. Molazemhosseini, H. Tourani, M. R. Naimi-Jamal, and A. Khavandi, “Nanoindentation and nanoscratching responses of PEEK based hybrid composites reinforced with short carbon fibers and nano-silica,” Polymer Testing, 32, 525-534 (2013).CrossRef
8.
go back to reference A. Godara, D. Raabe, and S. Green, “The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications,” Acta Biomaterialia, 3, 209-220 (2007).CrossRef A. Godara, D. Raabe, and S. Green, “The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications,” Acta Biomaterialia, 3, 209-220 (2007).CrossRef
9.
go back to reference S. Saiello, J. Kenny, and L. Nicolais, “Interface morphology of carbon fibre/PEEK composites,” J. Mater. Sci., 25, 3493-3496 (1990).CrossRef S. Saiello, J. Kenny, and L. Nicolais, “Interface morphology of carbon fibre/PEEK composites,” J. Mater. Sci., 25, 3493-3496 (1990).CrossRef
10.
go back to reference M. Zhang, J. Xu, Z. Zhang, H. Zeng, and X. Xiong, “Effect of transcrystallinity on tensile behaviour of discontinuous carbon fibre reinforced semicrystalline thermoplastic composites,” Polymer, 37, 5151-5158 (1996).CrossRef M. Zhang, J. Xu, Z. Zhang, H. Zeng, and X. Xiong, “Effect of transcrystallinity on tensile behaviour of discontinuous carbon fibre reinforced semicrystalline thermoplastic composites,” Polymer, 37, 5151-5158 (1996).CrossRef
11.
go back to reference L. T. Drzal and M. Madhukar, “Fibre-matrix adhesion and its relationship to composite mechanical properties,” J. Mater. Sci., 28, 569-610 (1993).CrossRef L. T. Drzal and M. Madhukar, “Fibre-matrix adhesion and its relationship to composite mechanical properties,” J. Mater. Sci., 28, 569-610 (1993).CrossRef
12.
go back to reference S. Ghaffari, G. Seon, and A. Makeev, “In-situ SEM based method for assessing fiber-matrix interface shear strength in CFRPs,” Materials & Design, 197, 109242 (2021).CrossRef S. Ghaffari, G. Seon, and A. Makeev, “In-situ SEM based method for assessing fiber-matrix interface shear strength in CFRPs,” Materials & Design, 197, 109242 (2021).CrossRef
13.
go back to reference H. S. Bedi, B. K. Billing, and P. K. Agnihotri, “Interphase engineering in carbon fiber/epoxy composites: Rate sensitivity of interfacial shear strength and interfacial fracture toughness,” Polymer Compos., 41, 2803-2815 (2020).CrossRef H. S. Bedi, B. K. Billing, and P. K. Agnihotri, “Interphase engineering in carbon fiber/epoxy composites: Rate sensitivity of interfacial shear strength and interfacial fracture toughness,” Polymer Compos., 41, 2803-2815 (2020).CrossRef
14.
go back to reference R. Sweat, J. G. Park, and R. Liang, “A Digital Twin Approach to a Quantitative Microstructure-Property Study of Carbon Fibers through HRTEM Characterization and Multiscale FEA,” Materials, 13, 4231 (2020).CrossRef R. Sweat, J. G. Park, and R. Liang, “A Digital Twin Approach to a Quantitative Microstructure-Property Study of Carbon Fibers through HRTEM Characterization and Multiscale FEA,” Materials, 13, 4231 (2020).CrossRef
15.
go back to reference R. D. Downes, A. Hao, J. G. Park, Y.-F. Su, R. Liang, B. D. Jensen, E. J. Siochi, and K. E. Wise, “Geometrically constrained self-assembly and crystal packing of flattened and aligned carbon nanotubes,” Carbon, 93, 953-966 (2015).CrossRef R. D. Downes, A. Hao, J. G. Park, Y.-F. Su, R. Liang, B. D. Jensen, E. J. Siochi, and K. E. Wise, “Geometrically constrained self-assembly and crystal packing of flattened and aligned carbon nanotubes,” Carbon, 93, 953-966 (2015).CrossRef
16.
go back to reference Y.-S. Dessureault, C. Jolowsky, S. Bell, S. Spiric, J. Molyneux, J. G. Park, A. Hao, and Z. Liang, “Tensile performance and failure modes of continuous carbon nanotube yarns for composite applications,” Mater. Sci. and Eng. A, 792, 139824 (2020).CrossRef Y.-S. Dessureault, C. Jolowsky, S. Bell, S. Spiric, J. Molyneux, J. G. Park, A. Hao, and Z. Liang, “Tensile performance and failure modes of continuous carbon nanotube yarns for composite applications,” Mater. Sci. and Eng. A, 792, 139824 (2020).CrossRef
17.
go back to reference E. J. Garcia, B. L. Wardle, and A. John Hart, “Joining prepreg composite interfaces with aligned carbon nanotubes,” Compos., Part A, 39, 1065-1070 (2008). E. J. Garcia, B. L. Wardle, and A. John Hart, “Joining prepreg composite interfaces with aligned carbon nanotubes,” Compos., Part A, 39, 1065-1070 (2008).
18.
go back to reference F. Zhao, Y. Huang, L. Liu, Y. Bai, and L. Xu, “Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites,” Carbon, 49, 2624-2632 (2011).CrossRef F. Zhao, Y. Huang, L. Liu, Y. Bai, and L. Xu, “Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites,” Carbon, 49, 2624-2632 (2011).CrossRef
19.
go back to reference J.-K. Kim, Y.-W. Mai, and Y.-W. Mai, “Chapter 2 - Characterization of interfaces,” in: Engineered Interfaces in Fiber Reinforced Composites, J.-K. Kim, Y.-W. Mai, and Y.-W. Mai, eds. (Elsevier Science Ltd, 1998), pp. 5-41. J.-K. Kim, Y.-W. Mai, and Y.-W. Mai, “Chapter 2 - Characterization of interfaces,” in: Engineered Interfaces in Fiber Reinforced Composites, J.-K. Kim, Y.-W. Mai, and Y.-W. Mai, eds. (Elsevier Science Ltd, 1998), pp. 5-41.
20.
go back to reference F. R. Jones, “A Review of interphase formation and design in fibre-reinforced composites,” J. Adhesion Sci. and Technol., 24, 171-202 (2010).CrossRef F. R. Jones, “A Review of interphase formation and design in fibre-reinforced composites,” J. Adhesion Sci. and Technol., 24, 171-202 (2010).CrossRef
21.
go back to reference D. Cho, Y. Choi, J.-H. Chang, and L. T. Drzal, “Interphase sizing temperature effect of LaRC PETI-5 on the dynamic mechanical thermal properties of carbon fiber/BMI composites,” Composite Interfaces, 13, 215-229 (2006).CrossRef D. Cho, Y. Choi, J.-H. Chang, and L. T. Drzal, “Interphase sizing temperature effect of LaRC PETI-5 on the dynamic mechanical thermal properties of carbon fiber/BMI composites,” Composite Interfaces, 13, 215-229 (2006).CrossRef
22.
go back to reference N. Dilsiz and J. P. Wightman, “Surface analysis of unsized and sized carbon fibers,” Carbon, 37, 1105-1114 (1999).CrossRef N. Dilsiz and J. P. Wightman, “Surface analysis of unsized and sized carbon fibers,” Carbon, 37, 1105-1114 (1999).CrossRef
23.
go back to reference T. J. Swait, C. Soutis, and F. R. Jones, “Optimisation of interfacial properties for tensile strength by plasma polymerisation,” Compos. Sci. and Technol., 68, 2302-2309 (2008).CrossRef T. J. Swait, C. Soutis, and F. R. Jones, “Optimisation of interfacial properties for tensile strength by plasma polymerisation,” Compos. Sci. and Technol., 68, 2302-2309 (2008).CrossRef
24.
go back to reference T. Ramanathan, A. Bismarck, E. Schulz, and K. Subramanian, “Investigation of the influence of acidic and basic surface groups on carbon fibres on the interfacial shear strength in an epoxy matrix by means of single-fibre pull-out test,” Compos. Sci. and Technol., 7 (2001). T. Ramanathan, A. Bismarck, E. Schulz, and K. Subramanian, “Investigation of the influence of acidic and basic surface groups on carbon fibres on the interfacial shear strength in an epoxy matrix by means of single-fibre pull-out test,” Compos. Sci. and Technol., 7 (2001).
25.
go back to reference H. B. Ezekiel, D. Sharp, M. M. Villalba, and J. Davis, “Laser-anodised carbon fibre: Coupled activation and patterning of sensor substrates,” J. Physics and Chemistry of Solids, 69, 2932-2935 (2008).CrossRef H. B. Ezekiel, D. Sharp, M. M. Villalba, and J. Davis, “Laser-anodised carbon fibre: Coupled activation and patterning of sensor substrates,” J. Physics and Chemistry of Solids, 69, 2932-2935 (2008).CrossRef
26.
go back to reference H. Guo, Y. D. Huang, L. H. Meng, L. Liu, D. P. Fan, and D. X. Liu, “Interface property of carbon fibers/epoxy resin composite improved by hydrogen peroxide in supercritical water,” Materials Letters, 63, 1531-1534 (2009).CrossRef H. Guo, Y. D. Huang, L. H. Meng, L. Liu, D. P. Fan, and D. X. Liu, “Interface property of carbon fibers/epoxy resin composite improved by hydrogen peroxide in supercritical water,” Materials Letters, 63, 1531-1534 (2009).CrossRef
27.
go back to reference A. Gao, Y. Gu, Q. Wu, C. Yuan, M. Li, and Z. Zhang, “Influence of processing temperature on interfacial behavior of HKT800 carbon fiber with BMI and epoxy matrices,” Chinese J. Aeronautics, 28, 1255-1262 (2015).CrossRef A. Gao, Y. Gu, Q. Wu, C. Yuan, M. Li, and Z. Zhang, “Influence of processing temperature on interfacial behavior of HKT800 carbon fiber with BMI and epoxy matrices,” Chinese J. Aeronautics, 28, 1255-1262 (2015).CrossRef
28.
go back to reference M. K. Almutairi, R. A. Felemban, and S. E. Pasha, “The Effect of different surface treatments of carbon fibers and their impact on composites,” Egyptian J. Hospital Medicine, 70, 1275-1281 (2018).CrossRef M. K. Almutairi, R. A. Felemban, and S. E. Pasha, “The Effect of different surface treatments of carbon fibers and their impact on composites,” Egyptian J. Hospital Medicine, 70, 1275-1281 (2018).CrossRef
29.
go back to reference L.-G. Tang and J. L. Kardos, “A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix,” Polym. Compos., 18, 100-113 (1997).CrossRef L.-G. Tang and J. L. Kardos, “A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix,” Polym. Compos., 18, 100-113 (1997).CrossRef
30.
go back to reference G. Wu, L. Chen, and L. Liu, “Effects of silanization and silica enrichment of carbon fibers on interfacial properties of methylphenylsilicone resin composites,” Compos., Part A, 98, 159-165 (2017).CrossRef G. Wu, L. Chen, and L. Liu, “Effects of silanization and silica enrichment of carbon fibers on interfacial properties of methylphenylsilicone resin composites,” Compos., Part A, 98, 159-165 (2017).CrossRef
31.
go back to reference C. Wang, J. Li, J. Yu, S. Sun, X. Li, F. Xie, B. Jiang, G. Wu, F. Yu, and Y. Huang, “Grafting of size-controlled graphene oxide sheets onto carbon fiber for reinforcement of carbon fiber/epoxy composite interfacial strength,” Compos., Part A, 101, 511-520 (2017).CrossRef C. Wang, J. Li, J. Yu, S. Sun, X. Li, F. Xie, B. Jiang, G. Wu, F. Yu, and Y. Huang, “Grafting of size-controlled graphene oxide sheets onto carbon fiber for reinforcement of carbon fiber/epoxy composite interfacial strength,” Compos., Part A, 101, 511-520 (2017).CrossRef
32.
go back to reference Y. Zhang and S.-J. Park, “Influence of the nanoscaled hybrid based on nanodiamond–graphene oxide architecture on the rheological and thermo-physical performances of carboxylated-polymeric composites,” Compos., Part A, 112, 356-364 (2018).CrossRef Y. Zhang and S.-J. Park, “Influence of the nanoscaled hybrid based on nanodiamond–graphene oxide architecture on the rheological and thermo-physical performances of carboxylated-polymeric composites,” Compos., Part A, 112, 356-364 (2018).CrossRef
33.
go back to reference Y. Zhang and S.-J. Park, “Imidazolium-optimized conductive interfaces in multilayer graphene nanoplatelet/epoxy composites for thermal management applications and electroactive devices,” Polymer, 168, 53-60 (2019).CrossRef Y. Zhang and S.-J. Park, “Imidazolium-optimized conductive interfaces in multilayer graphene nanoplatelet/epoxy composites for thermal management applications and electroactive devices,” Polymer, 168, 53-60 (2019).CrossRef
34.
go back to reference J. Huang, M. Gao, T. Pan, Y. Zhang, and Y. Lin, “Effective thermal conductivity of epoxy matrix filled with poly(ethyleneimine) functionalized carbon nanotubes,” Compos. Sci. and Technol., 95, 16-20 (2014).CrossRef J. Huang, M. Gao, T. Pan, Y. Zhang, and Y. Lin, “Effective thermal conductivity of epoxy matrix filled with poly(ethyleneimine) functionalized carbon nanotubes,” Compos. Sci. and Technol., 95, 16-20 (2014).CrossRef
35.
go back to reference Y. Zheng, X. Wang, and G. Wu, “Chemical modification of carbon fiber with diethylenetriaminepentaacetic acid/halloysite nanotube as a multifunctional interfacial reinforcement for silicone resin composites,” Polym. Adv. Technol., 31, 527-535 (2020).CrossRef Y. Zheng, X. Wang, and G. Wu, “Chemical modification of carbon fiber with diethylenetriaminepentaacetic acid/halloysite nanotube as a multifunctional interfacial reinforcement for silicone resin composites,” Polym. Adv. Technol., 31, 527-535 (2020).CrossRef
36.
go back to reference J. Karger-Kocsis, H. Mahmood, and A. Pegoretti, “Recent advances in fiber/matrix interphase engineering for polymer composites,” Progress in Mater. Sci., 73, 1-43 (2015).CrossRef J. Karger-Kocsis, H. Mahmood, and A. Pegoretti, “Recent advances in fiber/matrix interphase engineering for polymer composites,” Progress in Mater. Sci., 73, 1-43 (2015).CrossRef
37.
go back to reference F. Stojcevski, T. B. Hilditch, and L. C. Henderson, “A comparison of interfacial testing methods and sensitivities to carbon fiber surface treatment conditions,” Compos., Part A, 118, 293-301 (2019).CrossRef F. Stojcevski, T. B. Hilditch, and L. C. Henderson, “A comparison of interfacial testing methods and sensitivities to carbon fiber surface treatment conditions,” Compos., Part A, 118, 293-301 (2019).CrossRef
38.
go back to reference F. Stojcevski, T. Hilditch, and L. C. Henderson, “A modern account of Iosipescu testing,” Compos., Part A, 107, 545-554 (2018).CrossRef F. Stojcevski, T. Hilditch, and L. C. Henderson, “A modern account of Iosipescu testing,” Compos., Part A, 107, 545-554 (2018).CrossRef
39.
go back to reference T. Schüller, W. Beckert, B. Lauke, C. Ageorges, and K. Friedrich, “Single fibre transverse debonding: stress analysis of the Broutman test,” Compos., Part A, 31, 661-670 (2000).CrossRef T. Schüller, W. Beckert, B. Lauke, C. Ageorges, and K. Friedrich, “Single fibre transverse debonding: stress analysis of the Broutman test,” Compos., Part A, 31, 661-670 (2000).CrossRef
40.
go back to reference Y. Jia, W. Yan, and H.-Y. Liu, “Carbon fibre pullout under the influence of residual thermal stresses in polymer matrix composites,” Computational Mater. Sci., 62, 79-86 (2012).CrossRef Y. Jia, W. Yan, and H.-Y. Liu, “Carbon fibre pullout under the influence of residual thermal stresses in polymer matrix composites,” Computational Mater. Sci., 62, 79-86 (2012).CrossRef
41.
go back to reference Q.-S. Yang and X. Liu, “13 - Mechanical behavior of extra-strong CNT fibers and their composites,” in: Toughening Mechanisms in Composite Materials, Q. Qin and J. Ye, Eds., Woodhead Publishing Series in Composites Science and Engineering (Woodhead Publishing, 2015), pp. 339-372. Q.-S. Yang and X. Liu, “13 - Mechanical behavior of extra-strong CNT fibers and their composites,” in: Toughening Mechanisms in Composite Materials, Q. Qin and J. Ye, Eds., Woodhead Publishing Series in Composites Science and Engineering (Woodhead Publishing, 2015), pp. 339-372.
42.
go back to reference L. Teuber, H. Fischer, and N. Graupner, “Single fibre pull-out test versus short beam shear test: comparing different methods to assess the interfacial shear strength,” J. Mater. Sci., 48, 3248-3253 (2013).CrossRef L. Teuber, H. Fischer, and N. Graupner, “Single fibre pull-out test versus short beam shear test: comparing different methods to assess the interfacial shear strength,” J. Mater. Sci., 48, 3248-3253 (2013).CrossRef
43.
go back to reference B. Miller, P. Muri, and L. Rebenfeld, “A microbond method for determination of the shear strength of a fiber/resin interface,” Compos. Sci. and Technol., 28, 17-32 (1987).CrossRef B. Miller, P. Muri, and L. Rebenfeld, “A microbond method for determination of the shear strength of a fiber/resin interface,” Compos. Sci. and Technol., 28, 17-32 (1987).CrossRef
44.
go back to reference J. A. Nairn, “Analytical Fracture Mechanics Analysis of the Pull-Out Test Including the Effects of Friction and Thermal Stresses,” Adv. Compos. Letters 9, 0963693500000 (2000).CrossRef J. A. Nairn, “Analytical Fracture Mechanics Analysis of the Pull-Out Test Including the Effects of Friction and Thermal Stresses,” Adv. Compos. Letters 9, 0963693500000 (2000).CrossRef
45.
go back to reference L. Yang and J. L. Thomason, “Interface strength in glass fibre-polypropylene measured using the fibre pull-out and microbond methods,” Compos., Part A, 41, 1077-1083 (2010).CrossRef L. Yang and J. L. Thomason, “Interface strength in glass fibre-polypropylene measured using the fibre pull-out and microbond methods,” Compos., Part A, 41, 1077-1083 (2010).CrossRef
46.
go back to reference S. Zhandarov, C. Scheffler, E. Mäder, and U. Gohs, “Three Specimen Geometries and Three Methods of Data Evaluation in Single-Fiber Pullout Tests,” Mech. Compos. Mater., 55, 69-84 (2019).CrossRef S. Zhandarov, C. Scheffler, E. Mäder, and U. Gohs, “Three Specimen Geometries and Three Methods of Data Evaluation in Single-Fiber Pullout Tests,” Mech. Compos. Mater., 55, 69-84 (2019).CrossRef
47.
go back to reference S. Zhandarov, E. Pisanova, and E. Mäder, “Is there any contradiction between the stress and energy failure criteria in micromechanical tests? Part III. Experimental observation of crack propagation in the microbond test,” J. Adhesion Sci. and Technol., 19, 679-704 (2005).CrossRef S. Zhandarov, E. Pisanova, and E. Mäder, “Is there any contradiction between the stress and energy failure criteria in micromechanical tests? Part III. Experimental observation of crack propagation in the microbond test,” J. Adhesion Sci. and Technol., 19, 679-704 (2005).CrossRef
48.
go back to reference A. Hodzic, S. Kalyanasundaram, A. Lowe, and Z. H. Stachurski, “The microdroplet test: experimental and finite element analysis of the dependance of failure mode on droplet shape,” Composite Interfaces 6, 375-389 (1998).CrossRef A. Hodzic, S. Kalyanasundaram, A. Lowe, and Z. H. Stachurski, “The microdroplet test: experimental and finite element analysis of the dependance of failure mode on droplet shape,” Composite Interfaces 6, 375-389 (1998).CrossRef
49.
go back to reference J. L. Thomason and L. Yang, “Temperature dependence of the interfacial shear strength in glass-fibre polypropylene composites,” Compos. Sci. and Technol., 71, 1600-1605 (2011).CrossRef J. L. Thomason and L. Yang, “Temperature dependence of the interfacial shear strength in glass-fibre polypropylene composites,” Compos. Sci. and Technol., 71, 1600-1605 (2011).CrossRef
50.
go back to reference J. Beter, B. Schrittesser, B. Maroh, E. Sarlin, P. F. Fuchs, and G. Pinter, “Comparison and impact of different fiber debond techniques on fiber reinforced flexible composites,” Polymers, 12, 472 (2020).CrossRef J. Beter, B. Schrittesser, B. Maroh, E. Sarlin, P. F. Fuchs, and G. Pinter, “Comparison and impact of different fiber debond techniques on fiber reinforced flexible composites,” Polymers, 12, 472 (2020).CrossRef
51.
go back to reference P. Krishnan, “18 - Evaluation and methods of interfacial properties in fiber-reinforced composites,” in: Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, M. Jawaid, M. Thariq, and N. Saba, eds., Woodhead Publishing Series in Composites Science and Engineering (Woodhead Publishing, 2019), pp. 343-385. P. Krishnan, “18 - Evaluation and methods of interfacial properties in fiber-reinforced composites,” in: Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, M. Jawaid, M. Thariq, and N. Saba, eds., Woodhead Publishing Series in Composites Science and Engineering (Woodhead Publishing, 2019), pp. 343-385.
52.
go back to reference J.-K. Kim, Y.-W. Mai, and Y.-W. Mai, “Chapter 3 - Measurements of interface/interlaminar properties,” in Engineered Interfaces in Fiber Reinforced Composites, J.-K. Kim, Y.-W. Mai, and Y.-W. Mai, eds. (Elsevier Science Ltd, 1998), pp. 43-92. J.-K. Kim, Y.-W. Mai, and Y.-W. Mai, “Chapter 3 - Measurements of interface/interlaminar properties,” in Engineered Interfaces in Fiber Reinforced Composites, J.-K. Kim, Y.-W. Mai, and Y.-W. Mai, eds. (Elsevier Science Ltd, 1998), pp. 43-92.
53.
go back to reference C. Loumena, M. Nguyen, J. Lopez, and R. Kling, “Potentials for lasers in CFRP production,” Int. Congress on Applications of Lasers & Electro-Optics, 2012, 1026 (2018). C. Loumena, M. Nguyen, J. Lopez, and R. Kling, “Potentials for lasers in CFRP production,” Int. Congress on Applications of Lasers & Electro-Optics, 2012, 1026 (2018).
54.
go back to reference A. Salama, L. Li, P. Mativenga, and A. Sabli, “High-power picosecond laser drilling/machining of carbon fibre-reinforced polymer (CFRP) composites,” Appl. Phys. A, 122, 73 (2016).CrossRef A. Salama, L. Li, P. Mativenga, and A. Sabli, “High-power picosecond laser drilling/machining of carbon fibre-reinforced polymer (CFRP) composites,” Appl. Phys. A, 122, 73 (2016).CrossRef
55.
go back to reference A. M. Abrão, P. E. Faria, J. C. C. Rubio, P. Reis, and J. P. Davim, “Drilling of fiber reinforced plastics: A review,” J. Mater. Processing Technol., 186, 1-7 (2007).CrossRef A. M. Abrão, P. E. Faria, J. C. C. Rubio, P. Reis, and J. P. Davim, “Drilling of fiber reinforced plastics: A review,” J. Mater. Processing Technol., 186, 1-7 (2007).CrossRef
56.
go back to reference V. Oliveira, S. P. Sharma, M. F. S. F. de Moura, R. D. F. Moreira, and R. Vilar, “Surface treatment of CFRP composites using femtosecond laser radiation,” Optics and Lasers in Eng., 94, 37-43 (2017).CrossRef V. Oliveira, S. P. Sharma, M. F. S. F. de Moura, R. D. F. Moreira, and R. Vilar, “Surface treatment of CFRP composites using femtosecond laser radiation,” Optics and Lasers in Eng., 94, 37-43 (2017).CrossRef
57.
go back to reference J. Stock, M. F. Zaeh, and M. Conrad, “Remote Laser Cutting of CFRP: Improvements in the Cut Surface,” Physics Procedia, 39, 161-170 (2012).CrossRef J. Stock, M. F. Zaeh, and M. Conrad, “Remote Laser Cutting of CFRP: Improvements in the Cut Surface,” Physics Procedia, 39, 161-170 (2012).CrossRef
58.
go back to reference S. Ghaffari, A. Makeev, G. Seon, D. P. Cole, D. J. Magagnosc, and S. Bhowmick, “Understanding compressive strength improvement of high modulus carbon-fiber reinforced polymeric composites through fiber-matrix interface characterization,” Materials & Design, 193, 108798 (2020).CrossRef S. Ghaffari, A. Makeev, G. Seon, D. P. Cole, D. J. Magagnosc, and S. Bhowmick, “Understanding compressive strength improvement of high modulus carbon-fiber reinforced polymeric composites through fiber-matrix interface characterization,” Materials & Design, 193, 108798 (2020).CrossRef
59.
go back to reference G. Holmes, R. Peterson, D. Hunston, W. McDonough, and C. Schutte, “The Effect of Nonlinear Viscoelasticity on Interfacial Shear Strength Measurements,” in Time Dependent and Nonlinear Effects in Polymers and Composites, R. Schapery and C. Sun, eds. (ASTM International, 2000), pp. 98-98-20. G. Holmes, R. Peterson, D. Hunston, W. McDonough, and C. Schutte, “The Effect of Nonlinear Viscoelasticity on Interfacial Shear Strength Measurements,” in Time Dependent and Nonlinear Effects in Polymers and Composites, R. Schapery and C. Sun, eds. (ASTM International, 2000), pp. 98-98-20.
60.
go back to reference G. A. Holmes, R. C. Peterson, D. L. Hunston, and W. G. McDonough, “The Influence of the matrix modulus on the interfacial shear strength parameter,” Proc. 21th Annual Meeting Adhesion Society, February 22-25, Georgia, 175-178 (1998). G. A. Holmes, R. C. Peterson, D. L. Hunston, and W. G. McDonough, “The Influence of the matrix modulus on the interfacial shear strength parameter,” Proc. 21th Annual Meeting Adhesion Society, February 22-25, Georgia, 175-178 (1998).
61.
go back to reference T. E. Matikas, “Analysis of Load Transfer Behaviour and Determination of Interfacial Shear Strength in Single-Fibre-Reinforced Titanium Alloys,” Adv. Compos. Letters, 16, 096369350701600 (2007). T. E. Matikas, “Analysis of Load Transfer Behaviour and Determination of Interfacial Shear Strength in Single-Fibre-Reinforced Titanium Alloys,” Adv. Compos. Letters, 16, 096369350701600 (2007).
62.
go back to reference L. Broutman, “Measurement of the Fiber-Polymer Matrix Interfacial Strength,” Interfaces in Composites, 27-41 (1969). L. Broutman, “Measurement of the Fiber-Polymer Matrix Interfacial Strength,” Interfaces in Composites, 27-41 (1969).
63.
go back to reference J. Vogtmann, A. Klingler, T. Rief, and M. Gurka, “3D X-ray microscopy as a tool for in depth analysis of the interfacial interaction between a single carbon fiber and an epoxy matrix after mechanical loading,” J. Compos. Sci., 5, 121 (2021).CrossRef J. Vogtmann, A. Klingler, T. Rief, and M. Gurka, “3D X-ray microscopy as a tool for in depth analysis of the interfacial interaction between a single carbon fiber and an epoxy matrix after mechanical loading,” J. Compos. Sci., 5, 121 (2021).CrossRef
64.
go back to reference M. J. Pitkethly, J. P. Favre, U. Gaur, J. Jakubowski, S. F. Mudrich, D. L. Caldwell, L. T. Drzal, M. Nardin, H. D. Wagner, L. Di Landro, A. Hampe, J. P. Armistead, M. Desaeger, and I. Verpoest, “A round-robin programme on interfacial test methods,” Compos. Sci. and Technol., 48, 205-214 (1993).CrossRef M. J. Pitkethly, J. P. Favre, U. Gaur, J. Jakubowski, S. F. Mudrich, D. L. Caldwell, L. T. Drzal, M. Nardin, H. D. Wagner, L. Di Landro, A. Hampe, J. P. Armistead, M. Desaeger, and I. Verpoest, “A round-robin programme on interfacial test methods,” Compos. Sci. and Technol., 48, 205-214 (1993).CrossRef
65.
go back to reference S. Zhandarov, E. Mäder, C. Scheffler, G. Kalinka, C. Poitzsch, and S. Fliescher, “Investigation of interfacial strength parameters in polymer matrix composites: Compatibility and reproducibility,” Adv. Industrial and Eng. Polymer Research, 1, 82-92 (2018).CrossRef S. Zhandarov, E. Mäder, C. Scheffler, G. Kalinka, C. Poitzsch, and S. Fliescher, “Investigation of interfacial strength parameters in polymer matrix composites: Compatibility and reproducibility,” Adv. Industrial and Eng. Polymer Research, 1, 82-92 (2018).CrossRef
66.
go back to reference M. Lebbai, J.-K. Kim, and M. M. F. Yuen, “Effects of moisture and elevated temperature on reliability of interfacial adhesion in plastic packages,” J. of Elect. Mater. 32, 574-582 (2003).CrossRef M. Lebbai, J.-K. Kim, and M. M. F. Yuen, “Effects of moisture and elevated temperature on reliability of interfacial adhesion in plastic packages,” J. of Elect. Mater. 32, 574-582 (2003).CrossRef
67.
go back to reference C. A. Fuentes, K. W. Ting, C. Dupont-Gillain, M. Steensma, A. G. Talma, R. Zuijderduin, and A. W. Van Vuure, “Effect of humidity during manufacturing on the interfacial strength of non-pre-dried flax fibre/unsaturated polyester composites,” Compos., Part A, 84, 209-215 (2016).CrossRef C. A. Fuentes, K. W. Ting, C. Dupont-Gillain, M. Steensma, A. G. Talma, R. Zuijderduin, and A. W. Van Vuure, “Effect of humidity during manufacturing on the interfacial strength of non-pre-dried flax fibre/unsaturated polyester composites,” Compos., Part A, 84, 209-215 (2016).CrossRef
68.
go back to reference N. R. Choudhury, A. G. Kannan, and N. K. Dutta, “CHAPTER 21 - Novel nanocomposites and hybrids for lubricating coating applications,” in Tribology and Interface Engineering Series, K. Friedrich and A. K. Schlarb, Eds., Tribology of Polymeric Nanocomposites (Elsevier, 2008), Vol. 55, pp. 501-542. N. R. Choudhury, A. G. Kannan, and N. K. Dutta, “CHAPTER 21 - Novel nanocomposites and hybrids for lubricating coating applications,” in Tribology and Interface Engineering Series, K. Friedrich and A. K. Schlarb, Eds., Tribology of Polymeric Nanocomposites (Elsevier, 2008), Vol. 55, pp. 501-542.
69.
go back to reference Q. Wu, M. Li, Y. Gu, S. Wang, and Z. Zhang, “Imaging the interphase of carbon fiber composites using transmission electron microscopy: Preparations by focused ion beam, ion beam etching, and ultramicrotomy,” Chinese J. Aeronautics, 28, 1529-1538 (2015).CrossRef Q. Wu, M. Li, Y. Gu, S. Wang, and Z. Zhang, “Imaging the interphase of carbon fiber composites using transmission electron microscopy: Preparations by focused ion beam, ion beam etching, and ultramicrotomy,” Chinese J. Aeronautics, 28, 1529-1538 (2015).CrossRef
70.
go back to reference M. C. Seghini, F. Touchard, F. Sarasini, L. Chocinski-Arnault, D. Mellier, and J. Tirillò, “Interfacial adhesion assessment in flax/epoxy and in flax/vinylester composites by single yarn fragmentation test: Correlation with micro-CT analysis,” Compos., Part A, 113, 66-75 (2018).CrossRef M. C. Seghini, F. Touchard, F. Sarasini, L. Chocinski-Arnault, D. Mellier, and J. Tirillò, “Interfacial adhesion assessment in flax/epoxy and in flax/vinylester composites by single yarn fragmentation test: Correlation with micro-CT analysis,” Compos., Part A, 113, 66-75 (2018).CrossRef
71.
go back to reference D. Titus, E. James Jebaseelan Samuel, and S. M. Roopan, “Chapter 12 - Nanoparticle characterization techniques,” in Green Synthesis, Characterization and Applications of Nanoparticles, A. K. Shukla and S. Iravani, Eds., Micro and Nano Technologies (Elsevier, 2019), pp. 303-319. D. Titus, E. James Jebaseelan Samuel, and S. M. Roopan, “Chapter 12 - Nanoparticle characterization techniques,” in Green Synthesis, Characterization and Applications of Nanoparticles, A. K. Shukla and S. Iravani, Eds., Micro and Nano Technologies (Elsevier, 2019), pp. 303-319.
72.
go back to reference C. Jia, Q. Wang, P. Chen, S. Lu, and R. Ren, “Wettability assessment of plasma-treated PBO fibers based on thermogravimetric analysis,” Int. J. Adhesion and Adhesives, 74, 123-130 (2017).CrossRef C. Jia, Q. Wang, P. Chen, S. Lu, and R. Ren, “Wettability assessment of plasma-treated PBO fibers based on thermogravimetric analysis,” Int. J. Adhesion and Adhesives, 74, 123-130 (2017).CrossRef
73.
go back to reference H. N. Dhakal, Z. Y. Zhang, and N. Bennett, “Influence of fibre treatment and glass fibre hybridisation on thermal degradation and surface energy characteristics of hemp/unsaturated polyester composites,” Compos., Part B, 43, 2757-2761 (2012).CrossRef H. N. Dhakal, Z. Y. Zhang, and N. Bennett, “Influence of fibre treatment and glass fibre hybridisation on thermal degradation and surface energy characteristics of hemp/unsaturated polyester composites,” Compos., Part B, 43, 2757-2761 (2012).CrossRef
74.
go back to reference M. A. A. Dzul-Cervantes, O. F. Pacheco-Salazar, L. A. Can-Herrera, M. V. Moreno-Chulim, J. I. Cauich-Cupul, P. J. Herrera-Franco, and A. Valadez-González, “Effect of moisture content and carbon fiber surface treatments on the interfacial shear strength of a thermoplastic-modified epoxy resin composites,” J. Mater. Research and Technol., 9, 15739-15749 (2020).CrossRef M. A. A. Dzul-Cervantes, O. F. Pacheco-Salazar, L. A. Can-Herrera, M. V. Moreno-Chulim, J. I. Cauich-Cupul, P. J. Herrera-Franco, and A. Valadez-González, “Effect of moisture content and carbon fiber surface treatments on the interfacial shear strength of a thermoplastic-modified epoxy resin composites,” J. Mater. Research and Technol., 9, 15739-15749 (2020).CrossRef
75.
go back to reference R. K. Joki, “Cohesive zone model for mode I and mode II delamination,” DACOMAT project report, 27 (2020). R. K. Joki, “Cohesive zone model for mode I and mode II delamination,” DACOMAT project report, 27 (2020).
76.
go back to reference P. H. Geubelle and J. S. Baylor, “Impact-induced delamination of composites: a 2D simulation,” Compos., Part B, 29, 589-602 (1998).CrossRef P. H. Geubelle and J. S. Baylor, “Impact-induced delamination of composites: a 2D simulation,” Compos., Part B, 29, 589-602 (1998).CrossRef
77.
go back to reference M. M. Abdel Wahab, “11 - Simulating mode I fatigue crack propagation in adhesively-bonded composite joints,” in Fatigue and Fracture of Adhesively-Bonded Composite Joints, A. P. Vassilopoulos, ed. (Woodhead Publishing, 2015), pp. 323-344. M. M. Abdel Wahab, “11 - Simulating mode I fatigue crack propagation in adhesively-bonded composite joints,” in Fatigue and Fracture of Adhesively-Bonded Composite Joints, A. P. Vassilopoulos, ed. (Woodhead Publishing, 2015), pp. 323-344.
78.
go back to reference M. Heidari-Rarani and A. R. Ghasemi, “Appropriate shape of cohesive zone model for delamination propagation in ENF specimens with R-curve effects,” Theoretical and Appl. Fracture Mech., 90, 174-181 (2017).CrossRef M. Heidari-Rarani and A. R. Ghasemi, “Appropriate shape of cohesive zone model for delamination propagation in ENF specimens with R-curve effects,” Theoretical and Appl. Fracture Mech., 90, 174-181 (2017).CrossRef
79.
go back to reference H. Madadi, M. Naghdinasab, and A. Farrokhabadi, “Numerical investigation of matrix cracking propagation in crossply laminated composites subjected to three-point bending load using concurrent multiscale model,” Fatigue Fract. Eng. Mater. Struct., 43, 1159-1169 (2020).CrossRef H. Madadi, M. Naghdinasab, and A. Farrokhabadi, “Numerical investigation of matrix cracking propagation in crossply laminated composites subjected to three-point bending load using concurrent multiscale model,” Fatigue Fract. Eng. Mater. Struct., 43, 1159-1169 (2020).CrossRef
80.
go back to reference K. O. Low, S. M. Teng, M. Johar, H. A. Israr, and K. J. Wong, “Mode I delamination behaviour of carbon/epoxy composite at different displacement rates,” Compos., Part B, 176, 107293 (2019). K. O. Low, S. M. Teng, M. Johar, H. A. Israr, and K. J. Wong, “Mode I delamination behaviour of carbon/epoxy composite at different displacement rates,” Compos., Part B, 176, 107293 (2019).
81.
go back to reference D. Aveiga and M. L. Ribeiro, “A Delamination Propagation Model for Fiber Reinforced Laminated Composite Materials,” Math. Problems in Eng., 2018, 1-9 (2018).CrossRef D. Aveiga and M. L. Ribeiro, “A Delamination Propagation Model for Fiber Reinforced Laminated Composite Materials,” Math. Problems in Eng., 2018, 1-9 (2018).CrossRef
82.
go back to reference M. G. Pike and C. Oskay, “XFEM modeling of short microfiber reinforced composites with cohesive interfaces,” Finite Elements in Analysis and Design, 106, 16-31 (2015).CrossRef M. G. Pike and C. Oskay, “XFEM modeling of short microfiber reinforced composites with cohesive interfaces,” Finite Elements in Analysis and Design, 106, 16-31 (2015).CrossRef
83.
go back to reference C. T. Sun and Z.-H. Jin, “Chapter 9 - Cohesive Zone Model,” in Fracture Mechanics, C. T. Sun and Z.-H. Jin, eds. (Academic Press, 2012), pp. 227-246. C. T. Sun and Z.-H. Jin, “Chapter 9 - Cohesive Zone Model,” in Fracture Mechanics, C. T. Sun and Z.-H. Jin, eds. (Academic Press, 2012), pp. 227-246.
84.
go back to reference Y. Ismail, Y. Sheng, D. Yang, and J. Ye, “Discrete element modelling of unidirectional fibre-reinforced polymers under transverse tension,” Compos., Part B, 73, 118-125 (2015).CrossRef Y. Ismail, Y. Sheng, D. Yang, and J. Ye, “Discrete element modelling of unidirectional fibre-reinforced polymers under transverse tension,” Compos., Part B, 73, 118-125 (2015).CrossRef
85.
go back to reference A. Lisjak and G. Grasselli, “A review of discrete modeling techniques for fracturing processes in discontinuous rock masses,” J. Rock Mech. and Geotechnical Eng., 6, 301-314 (2014).CrossRef A. Lisjak and G. Grasselli, “A review of discrete modeling techniques for fracturing processes in discontinuous rock masses,” J. Rock Mech. and Geotechnical Eng., 6, 301-314 (2014).CrossRef
86.
go back to reference D. Xie and A. M. Waas, “Discrete cohesive zone model for mixed-mode fracture using finite element analysis,” Eng. Fracture Mech., 73, 1783-1796 (2006).CrossRef D. Xie and A. M. Waas, “Discrete cohesive zone model for mixed-mode fracture using finite element analysis,” Eng. Fracture Mech., 73, 1783-1796 (2006).CrossRef
87.
go back to reference Y. Li, Q. Wang, and S. Wang, “A review on enhancement of mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet: Molecular dynamics simulations,” Compos., Part B, 160, 348-361 (2019).CrossRef Y. Li, Q. Wang, and S. Wang, “A review on enhancement of mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet: Molecular dynamics simulations,” Compos., Part B, 160, 348-361 (2019).CrossRef
88.
go back to reference B. Demir, L. C. Henderson, and T. R. Walsh, “Design Rules for Enhanced Interfacial Shear Response in Functionalized Carbon Fiber Epoxy Composites,” ACS Appl. Mater. Interfaces, 9, 11846-11857 (2017).CrossRef B. Demir, L. C. Henderson, and T. R. Walsh, “Design Rules for Enhanced Interfacial Shear Response in Functionalized Carbon Fiber Epoxy Composites,” ACS Appl. Mater. Interfaces, 9, 11846-11857 (2017).CrossRef
89.
go back to reference D. J. Eyckens, B. Demir, J. D. Randall, T. R. Gengenbach, L. Servinis, T. R. Walsh, and L. C. Henderson, “Using molecular entanglement as a strategy to enhance carbon fiber-epoxy composite interfaces,” Compos. Sci. and Technol., 196, 108225 (2020).CrossRef D. J. Eyckens, B. Demir, J. D. Randall, T. R. Gengenbach, L. Servinis, T. R. Walsh, and L. C. Henderson, “Using molecular entanglement as a strategy to enhance carbon fiber-epoxy composite interfaces,” Compos. Sci. and Technol., 196, 108225 (2020).CrossRef
90.
go back to reference B. Demir, K. M. Beggs, B. L. Fox, L. Servinis, L. C. Henderson, and T. R. Walsh, “A predictive model of interfacial interactions between functionalised carbon fibre surfaces cross-linked with epoxy resin,” Compos. Sci. and Technol., 159, 127-134 (2018).CrossRef B. Demir, K. M. Beggs, B. L. Fox, L. Servinis, L. C. Henderson, and T. R. Walsh, “A predictive model of interfacial interactions between functionalised carbon fibre surfaces cross-linked with epoxy resin,” Compos. Sci. and Technol., 159, 127-134 (2018).CrossRef
91.
go back to reference S. Frankland, “The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation,” Compos. Sci. and Technol., 63, 1655-1661 (2003).CrossRef S. Frankland, “The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation,” Compos. Sci. and Technol., 63, 1655-1661 (2003).CrossRef
92.
go back to reference B. Yang, K. Yang, F.-Z. Xuan, Y. Xiang, D. Li, and C. Luo, “Enhanced adhesion between glass, carbon, and their hybrid fiber-bundle with epoxy at room and elevated temperatures: A comparative study between graphene and MWCNT filled interface strategies,” Polym. Compos., 39, E2370-E2380 (2018).CrossRef B. Yang, K. Yang, F.-Z. Xuan, Y. Xiang, D. Li, and C. Luo, “Enhanced adhesion between glass, carbon, and their hybrid fiber-bundle with epoxy at room and elevated temperatures: A comparative study between graphene and MWCNT filled interface strategies,” Polym. Compos., 39, E2370-E2380 (2018).CrossRef
93.
go back to reference H. Wang, X. Zhang, Y. Duan, and L. Meng, “Experimental and Numerical Study of the Interfacial Shear Strength in Carbon Fiber/Epoxy Resin Composite under Thermal Loads,” Int. J. Polymer Sci., 2018, 1-8 (2018). H. Wang, X. Zhang, Y. Duan, and L. Meng, “Experimental and Numerical Study of the Interfacial Shear Strength in Carbon Fiber/Epoxy Resin Composite under Thermal Loads,” Int. J. Polymer Sci., 2018, 1-8 (2018).
94.
go back to reference B. Yang, X. Tang, K. Yang, F.-Z. Xuan, Y. Xiang, L. He, and J. Sha, “Temperature effect on graphene-filled interface between glass-carbon hybrid fibers and epoxy resin characterized by fiber-bundle pull-out test: Research Article,” J. Appl. Polym. Sci., 135, 46263 (2018).CrossRef B. Yang, X. Tang, K. Yang, F.-Z. Xuan, Y. Xiang, L. He, and J. Sha, “Temperature effect on graphene-filled interface between glass-carbon hybrid fibers and epoxy resin characterized by fiber-bundle pull-out test: Research Article,” J. Appl. Polym. Sci., 135, 46263 (2018).CrossRef
95.
go back to reference K. Tanaka, D. Kugimoto, and T. Katayama, “Effects of temperature on the fibre matrix interfacial shear strength of carbon nanotube grafted carbon fibre reinforced heat resistant resin,” KEM, 827, 488-492 (2019).CrossRef K. Tanaka, D. Kugimoto, and T. Katayama, “Effects of temperature on the fibre matrix interfacial shear strength of carbon nanotube grafted carbon fibre reinforced heat resistant resin,” KEM, 827, 488-492 (2019).CrossRef
96.
go back to reference W. Liu, Y. Gao, X. Liu, Y. Qiu, and F. Xu, “Tensile and interfacial properties of dry-jet wet-spun and wet-spun polyacrylonitrile-based carbon fibers at cryogenic condition,” J. Eng. Fibers and Fabrics, 14, 155892501983516 (2019).CrossRef W. Liu, Y. Gao, X. Liu, Y. Qiu, and F. Xu, “Tensile and interfacial properties of dry-jet wet-spun and wet-spun polyacrylonitrile-based carbon fibers at cryogenic condition,” J. Eng. Fibers and Fabrics, 14, 155892501983516 (2019).CrossRef
97.
go back to reference R. Wang, C. Zhang, L. Hao, W. Jiao, F. Yang, and W. Liu, “Interfacial Properties of Nano-Silica Modified Cfrps under Cryogenic Condition,” Polymers and Polymer Compos., 22, 269-274 (2014).CrossRef R. Wang, C. Zhang, L. Hao, W. Jiao, F. Yang, and W. Liu, “Interfacial Properties of Nano-Silica Modified Cfrps under Cryogenic Condition,” Polymers and Polymer Compos., 22, 269-274 (2014).CrossRef
98.
go back to reference M. Yan, W. Jiao, F. Yang, G. Ding, H. Zou, Z. Xu, and R. Wang, “Simulation and measurement of cryogenic-interfacialproperties of T700/modified epoxy for composite cryotanks,” Materials & Design, 182, 108050 (2019).CrossRef M. Yan, W. Jiao, F. Yang, G. Ding, H. Zou, Z. Xu, and R. Wang, “Simulation and measurement of cryogenic-interfacialproperties of T700/modified epoxy for composite cryotanks,” Materials & Design, 182, 108050 (2019).CrossRef
99.
go back to reference C. Ageorges, K. Friedrich, T. Schüller, and B. Lauke, “Single-fibre Broutman test: fibre-matrix interface transverse debonding,” Compos., Part A, 30, 1423-1434 (1999).CrossRef C. Ageorges, K. Friedrich, T. Schüller, and B. Lauke, “Single-fibre Broutman test: fibre-matrix interface transverse debonding,” Compos., Part A, 30, 1423-1434 (1999).CrossRef
Metadata
Title
Interfacial Engineering of CFRP Composites and Temperature Effects: A Review
Authors
A. De Leon
R. D. Sweat
Publication date
30-06-2023
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 3/2023
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10106-w

Other articles of this Issue 3/2023

Mechanics of Composite Materials 3/2023 Go to the issue

Premium Partners