Skip to main content
Top
Published in: Journal of Nanoparticle Research 10/2016

01-10-2016 | Research Paper

Intergrown SnO2–TiO2@graphene ternary composite as high-performance lithium-ion battery anodes

Authors: Zheng Jiao, Renmei Gao, Haihua Tao, Shuai Yuan, Laiqiang Xu, Saisai Xia, Haijiao Zhang

Published in: Journal of Nanoparticle Research | Issue 10/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, a lot of metal oxides with high theoretical capacity have widely investigated as the high-performance anode materials for lithium-ion batteries (LIBs). In this work, a simple, facile and effective one-pot hydrothermal strategy toward ternary SnO2–TiO2@graphene composite has been developed by using SnCl2 and TiOSO4 as the starting materials. The obtained composite demonstrates a unique structure and high surface areas, in which both SnO2 and TiO2 nanoparticles are well grown on the surface of graphene. More interestingly, the SnO2 and TiO2 nanoparticles are intergrowth together, totally different with the traditional ternary hybrids. When used as anode material for LIBs, the introduction of TiO2 plays a crucial role in maintaining the structural stability of the electrode during Li+ insertion/extraction, which can effectively prevent the aggregation of SnO2 nanoparticles. The electrochemical tests indicate that as-prepared SnO2–TiO2@graphene composite exhibits a high capacity of 1276 mA h g−1 after 200 cycles at the current density of 200 mA g−1. Furthermore, the composite also maintains the specific capacity of 611 mA h g−1 at an ultrahigh current density of 2000 mA g−1, which is superior to those of the reported SnO2 and SnO2/graphene hybrids. Accordingly, the remarkable electrochemical performance of ternary SnO2–TiO2@graphene composites is mainly attributed to their unique nanostructure, high surface areas, and the synergistic effect not only between graphene and metal oxides but also between the intergrown SnO2 and TiO2 nanoparticles.

Graphical abstract

Intergrown SnO2 and TiO2 nanoparticles have been successfully anchored onto the graphene nanosheets as high-performance lithium-ion battery anodes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef
go back to reference Cai D, Yang T, Liu B, Wang D, Liu Y, Wang L, Li Q, Wang T (2014) A nanocomposite of tin dioxide octahedral nanocrystals exposed to high-energy facets anchored onto graphene sheets for high performance lithium-ion batteries. J Mater Chem A 2:13990–13995CrossRef Cai D, Yang T, Liu B, Wang D, Liu Y, Wang L, Li Q, Wang T (2014) A nanocomposite of tin dioxide octahedral nanocrystals exposed to high-energy facets anchored onto graphene sheets for high performance lithium-ion batteries. J Mater Chem A 2:13990–13995CrossRef
go back to reference Chang SY, Chen SF, Huang YC (2011) Synthesis, structural correlations, and photocatalytic properties of TiO2 nanotube/SnO2−Pd nanoparticle heterostructures. J Phys Chem C 115:1600–1607CrossRef Chang SY, Chen SF, Huang YC (2011) Synthesis, structural correlations, and photocatalytic properties of TiO2 nanotube/SnO2−Pd nanoparticle heterostructures. J Phys Chem C 115:1600–1607CrossRef
go back to reference Chen J, Yang L, Zhang Z, Fang S, Si Hirano (2013) Mesoporous TiO–Sn@ C core–shell microspheres for Li-ion batteries. Chem Commun 49:2792–2794CrossRef Chen J, Yang L, Zhang Z, Fang S, Si Hirano (2013) Mesoporous TiO–Sn@ C core–shell microspheres for Li-ion batteries. Chem Commun 49:2792–2794CrossRef
go back to reference Demir-Cakan R, Hu YS, Antonietti M, Maier J, Titirici MM (2008) Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem Mater 20:1227–1229CrossRef Demir-Cakan R, Hu YS, Antonietti M, Maier J, Titirici MM (2008) Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem Mater 20:1227–1229CrossRef
go back to reference Gao R, Zhang H, Yuan S, Shi L, Wu M, Jiao Z (2016) Controllable synthesis of rod-like SnO2 nanoparticles with tunable length anchored onto graphene nanosheets for improved lithium storage capability. RSC Adv 6:4116–4127CrossRef Gao R, Zhang H, Yuan S, Shi L, Wu M, Jiao Z (2016) Controllable synthesis of rod-like SnO2 nanoparticles with tunable length anchored onto graphene nanosheets for improved lithium storage capability. RSC Adv 6:4116–4127CrossRef
go back to reference Han X, Jin M, Xie S, Kuang Q, Jiang Z, Jiang Y, Xie Z, Zheng L (2009) Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy 221 facets and enhanced gas-sensing properties. Angew Chem Int Ed 121:9344–9347CrossRef Han X, Jin M, Xie S, Kuang Q, Jiang Z, Jiang Y, Xie Z, Zheng L (2009) Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy 221 facets and enhanced gas-sensing properties. Angew Chem Int Ed 121:9344–9347CrossRef
go back to reference Han S, Jiang J, Huang Y, Tang Y, Cao J, Wu D, Feng X (2015) Hierarchical TiO2–SnO2–graphene aerogels for enhanced lithium storage. Phys Chem Chem Phys 17:1580–1584CrossRef Han S, Jiang J, Huang Y, Tang Y, Cao J, Wu D, Feng X (2015) Hierarchical TiO2–SnO2–graphene aerogels for enhanced lithium storage. Phys Chem Chem Phys 17:1580–1584CrossRef
go back to reference Ji G, Ding B, Sha Z, Wu J, Ma Y, Lee JY (2013) Conformal graphene encapsulation of tin oxide nanoparticle aggregates for improved performance in reversible Li+ storage. Nanoscale 5:5965–5972CrossRef Ji G, Ding B, Sha Z, Wu J, Ma Y, Lee JY (2013) Conformal graphene encapsulation of tin oxide nanoparticle aggregates for improved performance in reversible Li+ storage. Nanoscale 5:5965–5972CrossRef
go back to reference Jiang B, Tian C, Zhou W, Wang J, Xie Y, Pan Q, Ren Z, Dong Y, Fu D, Han J (2011) In situ growth of TiO2 in interlayers of expanded graphite for the fabrication of TiO2–graphene with enhanced photocatalytic activity. Chem Eur J 17:8379–8387CrossRef Jiang B, Tian C, Zhou W, Wang J, Xie Y, Pan Q, Ren Z, Dong Y, Fu D, Han J (2011) In situ growth of TiO2 in interlayers of expanded graphite for the fabrication of TiO2–graphene with enhanced photocatalytic activity. Chem Eur J 17:8379–8387CrossRef
go back to reference Jiang X, Yang X, Zhu Y, Fan K, Zhao P, Li C (2013) Designed synthesis of graphene–TiO2–SnO2 ternary nanocomposites as lithium-ion anode materials. New J Chem 37:3671–3678CrossRef Jiang X, Yang X, Zhu Y, Fan K, Zhao P, Li C (2013) Designed synthesis of graphene–TiO2–SnO2 ternary nanocomposites as lithium-ion anode materials. New J Chem 37:3671–3678CrossRef
go back to reference Jiang X, Yang X, Zhu Y, Yao Y, Zhao P, Li C (2015) Graphene/carbon-coated Fe3O4 nanoparticle hybrids for enhanced lithium storage. J Mater Chem A 3:2361–2369CrossRef Jiang X, Yang X, Zhu Y, Yao Y, Zhao P, Li C (2015) Graphene/carbon-coated Fe3O4 nanoparticle hybrids for enhanced lithium storage. J Mater Chem A 3:2361–2369CrossRef
go back to reference Kumar V, Govind A, Nagarajan R (2011) Optical and photocatalytic properties of heavily F-doped SnO2 nanocrystals by a novel single-source precursor approach. Inorg Chem 50:5637–5645CrossRef Kumar V, Govind A, Nagarajan R (2011) Optical and photocatalytic properties of heavily F-doped SnO2 nanocrystals by a novel single-source precursor approach. Inorg Chem 50:5637–5645CrossRef
go back to reference Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593CrossRef Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593CrossRef
go back to reference Li S, Wang Y, Lai C, Qiu J, Ling M, Martens W, Zhao H, Zhang S (2014a) Directional synthesis of tin oxide@ graphene nanocomposites via a one-step up-scalable wet-mechanochemical route for lithium ion batteries. J Mater Chem A 2:10211–10217CrossRef Li S, Wang Y, Lai C, Qiu J, Ling M, Martens W, Zhao H, Zhang S (2014a) Directional synthesis of tin oxide@ graphene nanocomposites via a one-step up-scalable wet-mechanochemical route for lithium ion batteries. J Mater Chem A 2:10211–10217CrossRef
go back to reference Li X, Zhang Y, Li T, Zhong Q, Li H, Huang J (2014b) Carbon encapsulated ultrasmall SnO2 nanoparticles anchoring on graphene/TiO2 nanoscrolls for lithium storage. Electrochim Acta 147:40–46CrossRef Li X, Zhang Y, Li T, Zhong Q, Li H, Huang J (2014b) Carbon encapsulated ultrasmall SnO2 nanoparticles anchoring on graphene/TiO2 nanoscrolls for lithium storage. Electrochim Acta 147:40–46CrossRef
go back to reference Li L, Guan B, Zhang L, Su Z, Xie H, Wang C (2015a) Controlled synthesis of mesoporous hollow SnO2 nanococoons with enhanced lithium storage capability. J Mater Chem A 3:22021–22025CrossRef Li L, Guan B, Zhang L, Su Z, Xie H, Wang C (2015a) Controlled synthesis of mesoporous hollow SnO2 nanococoons with enhanced lithium storage capability. J Mater Chem A 3:22021–22025CrossRef
go back to reference Li S, Ling M, Qiu J, Han J, Zhang S (2015b) Anchoring ultra-fine TiO2–SnO2 solid solution particles onto graphene by one-pot ball-milling for long-life lithium-ion batteries. J Mater Chem A 3:9700–9706CrossRef Li S, Ling M, Qiu J, Han J, Zhang S (2015b) Anchoring ultra-fine TiO2–SnO2 solid solution particles onto graphene by one-pot ball-milling for long-life lithium-ion batteries. J Mater Chem A 3:9700–9706CrossRef
go back to reference Lian P, Liang S, Zhu X, Yang W, Wang H (2011) A novel Fe3O4–SnO2–graphene ternary nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 58:81–88CrossRef Lian P, Liang S, Zhu X, Yang W, Wang H (2011) A novel Fe3O4–SnO2–graphene ternary nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 58:81–88CrossRef
go back to reference Lin J, Peng Z, Xiang C, Ruan G, Yan Z, Natelson D, Tour JM (2013) Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7:6001–6006CrossRef Lin J, Peng Z, Xiang C, Ruan G, Yan Z, Natelson D, Tour JM (2013) Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7:6001–6006CrossRef
go back to reference Liu R, Duay J, Lee SB (2011) Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem Commun 47:1384–1404CrossRef Liu R, Duay J, Lee SB (2011) Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem Commun 47:1384–1404CrossRef
go back to reference Liu L, Fan Q, Sun C, Gu X, Li H, Gao F, Chen Y, Dong L (2013) Synthesis of sandwich-like TiO2@ C composite hollow spheres with high rate capability and stability for lithium-ion batteries. J Power Sources 221:141–148CrossRef Liu L, Fan Q, Sun C, Gu X, Li H, Gao F, Chen Y, Dong L (2013) Synthesis of sandwich-like TiO2@ C composite hollow spheres with high rate capability and stability for lithium-ion batteries. J Power Sources 221:141–148CrossRef
go back to reference Ma J, Manthiram A (2012) Precursor-directed formation of hollow Co3O4 nanospheres exhibiting superior lithium storage properties. RSC Adv 2:3187–3189CrossRef Ma J, Manthiram A (2012) Precursor-directed formation of hollow Co3O4 nanospheres exhibiting superior lithium storage properties. RSC Adv 2:3187–3189CrossRef
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
go back to reference Park H, Song T, Han H, Devadoss A, Yuh J, Choi C, Paik U (2012) SnO2 encapsulated TiO2 hollow nanofibers as anode material for lithium ion batteries. Electrochem Commun 22:81–84CrossRef Park H, Song T, Han H, Devadoss A, Yuh J, Choi C, Paik U (2012) SnO2 encapsulated TiO2 hollow nanofibers as anode material for lithium ion batteries. Electrochem Commun 22:81–84CrossRef
go back to reference Qiu J, Li S, Gray E, Liu H, Gu Q-F, Sun C, Lai C, Zhao H, Zhang S (2014) Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries. J Phys Chem C 118:8824–8830CrossRef Qiu J, Li S, Gray E, Liu H, Gu Q-F, Sun C, Lai C, Zhao H, Zhang S (2014) Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries. J Phys Chem C 118:8824–8830CrossRef
go back to reference Ren Y, Zhang J, Liu Y, Li H, Wei H, Li B, Wang X (2012) Synthesis and superior anode performances of TiO2–carbon–rGO composites in lithium-ion batteries. ACS Appl Mater Interfaces 4:4776–4780CrossRef Ren Y, Zhang J, Liu Y, Li H, Wei H, Li B, Wang X (2012) Synthesis and superior anode performances of TiO2–carbon–rGO composites in lithium-ion batteries. ACS Appl Mater Interfaces 4:4776–4780CrossRef
go back to reference Shi Y, Guo B, Corr SA, Shi Q, Hu YS, Heier KR, Chen L, Seshadri R, Stucky GD (2009) Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett 9:4215–4220CrossRef Shi Y, Guo B, Corr SA, Shi Q, Hu YS, Heier KR, Chen L, Seshadri R, Stucky GD (2009) Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett 9:4215–4220CrossRef
go back to reference Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRef Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRef
go back to reference Tang Y, Wu D, Chen S, Zhang F, Jia J, Feng X (2013) Highly reversible and ultra-fast lithium storage in mesoporous graphene-based TiO2/SnO2 hybrid nanosheets. Energy Environ Sci 6:2447–2451CrossRef Tang Y, Wu D, Chen S, Zhang F, Jia J, Feng X (2013) Highly reversible and ultra-fast lithium storage in mesoporous graphene-based TiO2/SnO2 hybrid nanosheets. Energy Environ Sci 6:2447–2451CrossRef
go back to reference Tian Q, Zhang Z, Yang L, Si Hirano (2014) Encapsulation of SnO2 nanoparticles into hollow TiO2 nanowires as high performance anode materials for lithium ion batteries. J Power Sources 253:9–16CrossRef Tian Q, Zhang Z, Yang L, Si Hirano (2014) Encapsulation of SnO2 nanoparticles into hollow TiO2 nanowires as high performance anode materials for lithium ion batteries. J Power Sources 253:9–16CrossRef
go back to reference Wang S, Zhang J, Chen C (2010) Fe3O4 submicron spheroids as anode materials for lithium-ion batteries with stable and high electrochemical performance. J Power Sources 195:5379–5381CrossRef Wang S, Zhang J, Chen C (2010) Fe3O4 submicron spheroids as anode materials for lithium-ion batteries with stable and high electrochemical performance. J Power Sources 195:5379–5381CrossRef
go back to reference Wang D, Yang J, Li X, Geng D, Li R, Cai M, Sham TK, Sun X (2013) Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy Environ Sci 6:2900–2906CrossRef Wang D, Yang J, Li X, Geng D, Li R, Cai M, Sham TK, Sun X (2013) Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy Environ Sci 6:2900–2906CrossRef
go back to reference Wu HB, Chen JS, Lou XW, Hng HH (2011) Synthesis of SnO2 hierarchical structures assembled from nanosheets and their lithium storage properties. J Phys Chem C 115:24605–24610CrossRef Wu HB, Chen JS, Lou XW, Hng HH (2011) Synthesis of SnO2 hierarchical structures assembled from nanosheets and their lithium storage properties. J Phys Chem C 115:24605–24610CrossRef
go back to reference Wu L, Bresser D, Buchholz D, Passerini S (2015) Nanocrystalline TiO2 (B) as anode material for sodium-ion batteries. J Electrochem Soc 162:A3052–A3058CrossRef Wu L, Bresser D, Buchholz D, Passerini S (2015) Nanocrystalline TiO2 (B) as anode material for sodium-ion batteries. J Electrochem Soc 162:A3052–A3058CrossRef
go back to reference Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857CrossRef Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857CrossRef
go back to reference Yang S, Yue W, Zhu J, Ren Y, Yang X (2013) Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv Funct Mater 23(28):3570–3576CrossRef Yang S, Yue W, Zhu J, Ren Y, Yang X (2013) Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv Funct Mater 23(28):3570–3576CrossRef
go back to reference Zhang H, Tao H, Jiang Y, Jiao Z, Minghong Wu, Zhao B (2010a) Ordered nanostructure CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries. J Power Sources 195:2950–2955CrossRef Zhang H, Tao H, Jiang Y, Jiao Z, Minghong Wu, Zhao B (2010a) Ordered nanostructure CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries. J Power Sources 195:2950–2955CrossRef
go back to reference Zhang LS, Jiang LY, Yan HJ, Wang WD, Wang W, Song WG, Guo YG, Wan LJ (2010b) Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. J Mater Chem 20:5462–5467CrossRef Zhang LS, Jiang LY, Yan HJ, Wang WD, Wang W, Song WG, Guo YG, Wan LJ (2010b) Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. J Mater Chem 20:5462–5467CrossRef
go back to reference Zhang H, Xu P, Du G, Chen Z, Oh K, Pan D, Jiao Z (2011a) A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange. Nano Res 4:274–283CrossRef Zhang H, Xu P, Du G, Chen Z, Oh K, Pan D, Jiao Z (2011a) A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange. Nano Res 4:274–283CrossRef
go back to reference Zhang J, Xiong Z, Zhao XS (2011b) Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation. J Mater Chem 21:3634–3640CrossRef Zhang J, Xiong Z, Zhao XS (2011b) Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation. J Mater Chem 21:3634–3640CrossRef
go back to reference Zhang H, Xu P, Ni Y, Geng H, Zheng G, Dong B, Jiao Z (2014) In situ chemical synthesis of SnO2/reduced graphene oxide nanocomposites as anode materials for lithium-ion batteries. J Mater Res 29:617–624CrossRef Zhang H, Xu P, Ni Y, Geng H, Zheng G, Dong B, Jiao Z (2014) In situ chemical synthesis of SnO2/reduced graphene oxide nanocomposites as anode materials for lithium-ion batteries. J Mater Res 29:617–624CrossRef
go back to reference Zhang Y, Pu X, Yang Y, Zhu Y, Hou H, Jing M, Yang X, Chen J, Ji X (2015) An electrochemical investigation of rutile TiO2 microspheres anchored by nanoneedle clusters for sodium storage. Phys Chem Chem Phys 17:15764–15770CrossRef Zhang Y, Pu X, Yang Y, Zhu Y, Hou H, Jing M, Yang X, Chen J, Ji X (2015) An electrochemical investigation of rutile TiO2 microspheres anchored by nanoneedle clusters for sodium storage. Phys Chem Chem Phys 17:15764–15770CrossRef
go back to reference Zhao B, Jiang Y, Zhang H, Tao H, Zhong M (2009) Jiao Z (2009) Morphology and electrical properties of carbon coated LiFePO4 cathode materials. J Power Sources 189:462–466CrossRef Zhao B, Jiang Y, Zhang H, Tao H, Zhong M (2009) Jiao Z (2009) Morphology and electrical properties of carbon coated LiFePO4 cathode materials. J Power Sources 189:462–466CrossRef
go back to reference Zhao W, Zhang M, Ai Z, Yang Y, Xi H, Shi Q, Xu X, Shi H (2014) Synthesis, characterization, and photocatalytic properties of SnO2/rutile TiO2/anatase TiO2 heterojunctions modified by Pt. J Phys Chem C 118:23117–23125CrossRef Zhao W, Zhang M, Ai Z, Yang Y, Xi H, Shi Q, Xu X, Shi H (2014) Synthesis, characterization, and photocatalytic properties of SnO2/rutile TiO2/anatase TiO2 heterojunctions modified by Pt. J Phys Chem C 118:23117–23125CrossRef
go back to reference Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313CrossRef Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313CrossRef
go back to reference Zhou X, Wan LJ, Guo YG (2013) Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater 25:2152–2157CrossRef Zhou X, Wan LJ, Guo YG (2013) Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater 25:2152–2157CrossRef
Metadata
Title
Intergrown SnO2–TiO2@graphene ternary composite as high-performance lithium-ion battery anodes
Authors
Zheng Jiao
Renmei Gao
Haihua Tao
Shuai Yuan
Laiqiang Xu
Saisai Xia
Haijiao Zhang
Publication date
01-10-2016
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 10/2016
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-016-3617-5

Other articles of this Issue 10/2016

Journal of Nanoparticle Research 10/2016 Go to the issue

Premium Partners