Skip to main content
Top
Published in: Journal of Materials Science 25/2021

31-05-2021 | Energy materials

Intermediate temperature proton electrolytes based on cesium dihydrogen phosphate and poly(vinylidene fluoride-co-hexafluoropropylene)

Authors: Irina N. Bagryantseva, Valentina G. Ponomareva, Vyacheslav R. Khusnutdinov

Published in: Journal of Materials Science | Issue 25/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Proton conductivity, morphology, phase composition and mechanical properties of (1-x)CsH2PO4-xp(VDF/HFP) (x = 0.05–0.25, weight ratio) polymer electrolytes were investigated for the first time. The chemical interaction of the organic matrix and acid salt was not observed and crystal structure of CsH2PO4 was preserved. A method for the synthesis of thin membranes with uniform distribution of the components was proposed. Thin flexible membranes with uniform distribution of sub-micrometer CsH2PO4 particles in the polymer membranes and improved hydrolytic stability were obtained firstly by using a bead mill. The mechanical strength of the hybrid polymer compounds was determined using the Vickers microhardness measurements. Proton conductivity in the (1-x)CsH2PO4-xp(VDF/HFP) electrolytes decreases monotonically with x increase due to the «conductor–insulator» percolation. Nevertheless, the values of proton conductivity remain sufficiently high, and along with small thickness, flexibility, improved mechanical and hydrophobic properties, it makes polymer electrolytes based on CsH2PO4 promising for membranes of medium-temperature fuel cells.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Uda T, Haile SM (2005) Thin-membrane solid-acid fuel cell. Electrochem Lett 8:245–246 Uda T, Haile SM (2005) Thin-membrane solid-acid fuel cell. Electrochem Lett 8:245–246
2.
go back to reference Boysen DA, Uda T, Chisholm CRI, Haile SM (2004) High-performance solid acid fuel cells through humidity stabilization. Science 303:68–70CrossRef Boysen DA, Uda T, Chisholm CRI, Haile SM (2004) High-performance solid acid fuel cells through humidity stabilization. Science 303:68–70CrossRef
3.
go back to reference Haile SM, Chisholm CRI, Sasaki K, Boysen DA, Uda T (2007) Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes. Faraday Discuss 134:17–39CrossRef Haile SM, Chisholm CRI, Sasaki K, Boysen DA, Uda T (2007) Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes. Faraday Discuss 134:17–39CrossRef
4.
go back to reference Uda T, Boysen DA, Chisholm CRI, Haile SM (2006) Alcohol fuel cells at optimal temperatures. Electrochem Solid-State Lett 9:A261–A264CrossRef Uda T, Boysen DA, Chisholm CRI, Haile SM (2006) Alcohol fuel cells at optimal temperatures. Electrochem Solid-State Lett 9:A261–A264CrossRef
5.
go back to reference Nunes-Pereira J, Ribeiro S, Ribeiro C, Gombek CJ, Gama FM, Gomes AC, Patterson DA, Lanceros-Mendez S (2015) Poly(vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications. Polym Test 44:234–241CrossRef Nunes-Pereira J, Ribeiro S, Ribeiro C, Gombek CJ, Gama FM, Gomes AC, Patterson DA, Lanceros-Mendez S (2015) Poly(vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications. Polym Test 44:234–241CrossRef
6.
go back to reference Qing G, Kikuchi R, Takagaki A, Sugawara T, Oyama ST (2014) CsH2PO4/Polyvinylidene fluoride composite electrolytes for intermediate temperature fuel cells. J Electrochem Soc 161:451–457CrossRef Qing G, Kikuchi R, Takagaki A, Sugawara T, Oyama ST (2014) CsH2PO4/Polyvinylidene fluoride composite electrolytes for intermediate temperature fuel cells. J Electrochem Soc 161:451–457CrossRef
7.
go back to reference Xie Q, Li Y, Hu J, Chen X, Li H (2015) A CsH2PO4-based composite electrolyte membrane for intermediate temperature fuel cells. J Membr Sci 489:98–105CrossRef Xie Q, Li Y, Hu J, Chen X, Li H (2015) A CsH2PO4-based composite electrolyte membrane for intermediate temperature fuel cells. J Membr Sci 489:98–105CrossRef
8.
go back to reference Qing G, Kikuchi R, Takagaki A, Sugawara T, Oyama ST (2015) CsH2PO4/epoxy composite electrolytes for intermediate temperature fuel cells. Electrochim Acta 169:219–226CrossRef Qing G, Kikuchi R, Takagaki A, Sugawara T, Oyama ST (2015) CsH2PO4/epoxy composite electrolytes for intermediate temperature fuel cells. Electrochim Acta 169:219–226CrossRef
9.
go back to reference Abdelrahman A, Abel B, Varga A (2017) Towards rational electrode design: quantifying the triplephase boundary activity of Pt in solid acid fuel cell anodes by electrochemical impedance spectroscopy. J Appl Electrochem 47:327–334CrossRef Abdelrahman A, Abel B, Varga A (2017) Towards rational electrode design: quantifying the triplephase boundary activity of Pt in solid acid fuel cell anodes by electrochemical impedance spectroscopy. J Appl Electrochem 47:327–334CrossRef
10.
go back to reference Lim D-K, Liu J, Pandey SA, Paik H, Chisholm CRI, Hupp JT, Haile SM (2018) Atomic layer deposition of Pt@CsH2PO4 for the cathodes of solid acid fuel cells. Electrochim Acta 288:12–19CrossRef Lim D-K, Liu J, Pandey SA, Paik H, Chisholm CRI, Hupp JT, Haile SM (2018) Atomic layer deposition of Pt@CsH2PO4 for the cathodes of solid acid fuel cells. Electrochim Acta 288:12–19CrossRef
11.
go back to reference Varga A, Brunelli NA, Louie MW, Giapis KP, Haile SM (2010) Composite nanostructured solid-acid fuel-cell electrodes via electrospray deposition. J Mater Chem 20:6309–6315CrossRef Varga A, Brunelli NA, Louie MW, Giapis KP, Haile SM (2010) Composite nanostructured solid-acid fuel-cell electrodes via electrospray deposition. J Mater Chem 20:6309–6315CrossRef
12.
go back to reference Suryaprakash RC, Lohmann FP, Wagner M, Abel B, Varga A (2014) Spray drying as a novel and scalable fabrication method for nanostructured CsH2PO4, Pt-thin-film composite electrodes for solid acid fuel cells. RSC Adv 4:60429–60436CrossRef Suryaprakash RC, Lohmann FP, Wagner M, Abel B, Varga A (2014) Spray drying as a novel and scalable fabrication method for nanostructured CsH2PO4, Pt-thin-film composite electrodes for solid acid fuel cells. RSC Adv 4:60429–60436CrossRef
13.
go back to reference Ahn YS, Mangani IR, Park CW, Kim J (2006) Study on the morphology of CsH2PO4 using the mixture of methanol and polyols. J Power Sour 163:107–112CrossRef Ahn YS, Mangani IR, Park CW, Kim J (2006) Study on the morphology of CsH2PO4 using the mixture of methanol and polyols. J Power Sour 163:107–112CrossRef
14.
go back to reference Lohmann-Richters FP, Odenwald C, Kickelbick G, Abel B, Varga Á (2018) Facile and scalable synthesis of sub-micrometer electrolyte particles for solid acid fuel cells. RSC Adv 8:21806–21815CrossRef Lohmann-Richters FP, Odenwald C, Kickelbick G, Abel B, Varga Á (2018) Facile and scalable synthesis of sub-micrometer electrolyte particles for solid acid fuel cells. RSC Adv 8:21806–21815CrossRef
15.
go back to reference Hosseini S, Daud WRW, Badiei M, Kadhum AAH, Mohammad AB (2011) Effect of surfactants in synthesis of CsH2PO4 as protonic conductive membrane. Bull Mater Sci 34:759–765CrossRef Hosseini S, Daud WRW, Badiei M, Kadhum AAH, Mohammad AB (2011) Effect of surfactants in synthesis of CsH2PO4 as protonic conductive membrane. Bull Mater Sci 34:759–765CrossRef
16.
go back to reference Chen X, Zhang Y, Ribeiorinha P, Li H, Kong X, Boaventura M (2018) A proton conductor electrolyte based on molten CsH5(PO4)2 for intermediate-temperature fuel cells. RSC Adv 8:5225–5232CrossRef Chen X, Zhang Y, Ribeiorinha P, Li H, Kong X, Boaventura M (2018) A proton conductor electrolyte based on molten CsH5(PO4)2 for intermediate-temperature fuel cells. RSC Adv 8:5225–5232CrossRef
17.
go back to reference Liu L, Li H, Chen X, Lei X (2019) Electrolyte membranes based on molten KH5(PO4)2 for intermediate temperature fuel cells. Fuel Cells 19:280–288CrossRef Liu L, Li H, Chen X, Lei X (2019) Electrolyte membranes based on molten KH5(PO4)2 for intermediate temperature fuel cells. Fuel Cells 19:280–288CrossRef
18.
go back to reference Bagryantseva IN, Gaydamaka AA, Ponomareva VG (2020) Intermediate temperature proton electrolytes based on cesium dihydrogen phosphate and Butvar polymer. Ionics 26:1813–1818CrossRef Bagryantseva IN, Gaydamaka AA, Ponomareva VG (2020) Intermediate temperature proton electrolytes based on cesium dihydrogen phosphate and Butvar polymer. Ionics 26:1813–1818CrossRef
19.
go back to reference Bagryantseva IN, Ponomareva VG, Lazareva NP (2019) Proton-conductive membranes based on CsH2PO4 and ultra-dispersed polytetrafluoroethylene. Ionics 329:61–66CrossRef Bagryantseva IN, Ponomareva VG, Lazareva NP (2019) Proton-conductive membranes based on CsH2PO4 and ultra-dispersed polytetrafluoroethylene. Ionics 329:61–66CrossRef
20.
go back to reference Boysen DA, Chisholm CRI, Haile SM, Narayanan SR (2020) Polymer solid acid composite membranes for fuel-cell applications. J Electrochem Soc 147:3610–3613CrossRef Boysen DA, Chisholm CRI, Haile SM, Narayanan SR (2020) Polymer solid acid composite membranes for fuel-cell applications. J Electrochem Soc 147:3610–3613CrossRef
21.
go back to reference Drobny JG (2009) Technology of fluoropolymers. 2nd edn. Taylor & Francis Group, LLC Drobny JG (2009) Technology of fluoropolymers. 2nd edn. Taylor & Francis Group, LLC
22.
go back to reference Soresi B, Quartarone E, Mustarelli P, Magistris A, Chiodelli G (2004) PVDF and P(VDF-HFP)-based proton exchange membranes. Ionics 166:383–389CrossRef Soresi B, Quartarone E, Mustarelli P, Magistris A, Chiodelli G (2004) PVDF and P(VDF-HFP)-based proton exchange membranes. Ionics 166:383–389CrossRef
23.
go back to reference Ameduri B (2009) From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: recent developments and future trends. Chem Rev 109:6632–6686CrossRef Ameduri B (2009) From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: recent developments and future trends. Chem Rev 109:6632–6686CrossRef
24.
go back to reference Jeonga H-S, Kim D-W, Jeong YU, Lee S-Y (2010) Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries. J Power Sour 195:6116–6121CrossRef Jeonga H-S, Kim D-W, Jeong YU, Lee S-Y (2010) Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries. J Power Sour 195:6116–6121CrossRef
25.
go back to reference Yang C-C, Chen Y-C, Lian Z-Y, Liou T-H, Shih J-Y (2012) Fabrication and characterization of P(VDF-HFP)/SBA-15 composite membranes for Li-ion batteries. J Electrochem 16:1815–1821 Yang C-C, Chen Y-C, Lian Z-Y, Liou T-H, Shih J-Y (2012) Fabrication and characterization of P(VDF-HFP)/SBA-15 composite membranes for Li-ion batteries. J Electrochem 16:1815–1821
26.
go back to reference Coelho AA, Evans JSO, Evans IR, Kern A, Parsons S (2011) The TOPAS symbolic computation system. Powder Diffr 26:S22–S25CrossRef Coelho AA, Evans JSO, Evans IR, Kern A, Parsons S (2011) The TOPAS symbolic computation system. Powder Diffr 26:S22–S25CrossRef
27.
go back to reference Baker RW (2004) Membrane technology and applications. John Wiley & Sons, Ltd Baker RW (2004) Membrane technology and applications. John Wiley & Sons, Ltd
28.
go back to reference Baranov AI, Shuvalov LA (1982) Superionic conductivity and phase transformations in CsHSO4 and CsHSeO4. JETP Lett 36:459–462 Baranov AI, Shuvalov LA (1982) Superionic conductivity and phase transformations in CsHSO4 and CsHSeO4. JETP Lett 36:459–462
29.
go back to reference Baranov AI, Khiznichenko VP, Sandler VA, Shuvalov LA (1988) Frequency dielectric dispersion in the ferroelectric and superionic phases of CsH2PO4. Ferroelectrics 81:1147–1150 Baranov AI, Khiznichenko VP, Sandler VA, Shuvalov LA (1988) Frequency dielectric dispersion in the ferroelectric and superionic phases of CsH2PO4. Ferroelectrics 81:1147–1150
30.
go back to reference Preisinger A, Mereiter K, Bronowska W (1994) The phase transition of CsH2PO4 (CDP) at 505 K. Mater Sci Forum 166:511–516CrossRef Preisinger A, Mereiter K, Bronowska W (1994) The phase transition of CsH2PO4 (CDP) at 505 K. Mater Sci Forum 166:511–516CrossRef
31.
go back to reference Ponomareva VG, Lavrova GV, Simonova LG (1999) The influence of heterogeneous dopant porous structure on the properties of protonic solid electrolyte in the CsHSO4-SiO2 system. Ionics 118:317–323CrossRef Ponomareva VG, Lavrova GV, Simonova LG (1999) The influence of heterogeneous dopant porous structure on the properties of protonic solid electrolyte in the CsHSO4-SiO2 system. Ionics 118:317–323CrossRef
32.
go back to reference Ponomareva VG, Shutova ES (2005) Composite electrolytes Cs3(H2PO4)(HSO4)2/SiO2 with high proton conductivity. Ionics 76:2905–2908CrossRef Ponomareva VG, Shutova ES (2005) Composite electrolytes Cs3(H2PO4)(HSO4)2/SiO2 with high proton conductivity. Ionics 76:2905–2908CrossRef
33.
go back to reference Ponomareva VG, Shutova ES, Lavrova GV (2008) Electrical conductivity and thermal stability of (1–x)CsH2PO4/xSiPyOz (x=0.2–0.7) composites. Inorg Mater 44:1009–1014CrossRef Ponomareva VG, Shutova ES, Lavrova GV (2008) Electrical conductivity and thermal stability of (1–x)CsH2PO4/xSiPyOz (x=0.2–0.7) composites. Inorg Mater 44:1009–1014CrossRef
34.
go back to reference Wagner M, Dreßler C, Lohmann-Richters FP, Hanus K, Sebastiani D, Varga A, Abel B (2019) Mechanism of ion conductivity through polymer stabilized CsH2PO4 nanoparticular layers from experiment and theory. J Mater Chem A 7:27367–27376CrossRef Wagner M, Dreßler C, Lohmann-Richters FP, Hanus K, Sebastiani D, Varga A, Abel B (2019) Mechanism of ion conductivity through polymer stabilized CsH2PO4 nanoparticular layers from experiment and theory. J Mater Chem A 7:27367–27376CrossRef
35.
go back to reference Wagner M, Lorenz O, Lohmann-Richters FP, Varga A, Abel B (2020) On the role of local heating in cathode degradation during the oxygen reduction reaction in solid acid fuel cells. Sustain Energy Fuels 4:5284CrossRef Wagner M, Lorenz O, Lohmann-Richters FP, Varga A, Abel B (2020) On the role of local heating in cathode degradation during the oxygen reduction reaction in solid acid fuel cells. Sustain Energy Fuels 4:5284CrossRef
Metadata
Title
Intermediate temperature proton electrolytes based on cesium dihydrogen phosphate and poly(vinylidene fluoride-co-hexafluoropropylene)
Authors
Irina N. Bagryantseva
Valentina G. Ponomareva
Vyacheslav R. Khusnutdinov
Publication date
31-05-2021
Publisher
Springer US
Published in
Journal of Materials Science / Issue 25/2021
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06137-0

Other articles of this Issue 25/2021

Journal of Materials Science 25/2021 Go to the issue

Premium Partners