Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

13. Intermediates in Ammonothermal Synthesis and Crystal Growth

Abstract

Mineralizers possess a central relevance in ammonothermal synthesis and formation of soluble species for material transport and crystal growth in particular, governing the solubility, transport direction and deposition processes. In this chapter we review the knowledge on solubilities and chemical behavior of common mineralizers for ammonothermal synthesis. Additionally, we present the current knowledge on intermediates during ammonothermal gallium nitride crystal growth, depending on the nature of the applied mineralizer, as well as during a conceivable ammonothermal synthesis of zinc nitride. Additionally, crystal growth of indium nitride is discussed with focus on chemical processes within the ammonia medium.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Juza, H. Jacobs, Ammonothermal synthesis of magnesium and beryllium amides. Angew. Chem. Int. Ed. 5, 247 (1966) CrossRef R. Juza, H. Jacobs, Ammonothermal synthesis of magnesium and beryllium amides. Angew. Chem. Int. Ed. 5, 247 (1966) CrossRef
2.
go back to reference T.M.M. Richter, R. Niewa, Chemistry of ammonothermal synthesis. Inorganics 2, 29–78 (2014) CrossRef T.M.M. Richter, R. Niewa, Chemistry of ammonothermal synthesis. Inorganics 2, 29–78 (2014) CrossRef
3.
go back to reference S. Zhang, D.A. Zherebtsov, F.J. DiSalvo, R. Niewa, Na 5[CN 2] 2[CN], (Li, Na) 5[CN 2] 2[CN], and K 2[CN 2]: carbodiimides from high-pressure synthesis. Z. Anorg. Allg. Chem. 638, 2111–2116 (2012) CrossRef S. Zhang, D.A. Zherebtsov, F.J. DiSalvo, R. Niewa, Na 5[CN 2] 2[CN], (Li, Na) 5[CN 2] 2[CN], and K 2[CN 2]: carbodiimides from high-pressure synthesis. Z. Anorg. Allg. Chem. 638, 2111–2116 (2012) CrossRef
4.
go back to reference M. Mallmann, J. Häusler, N. Cordes, W. Schnick, Ammonothermal synthesis of alkali-alkaline earth metal and akali-rare earth metal carbodiimides: K 5–x M x(CN 2) 2+x(HCN 2) 1–x ( M=Sr, Eu) and Na 4.32Sr 0.68(CN 2) 2.68(HCN 2) 0.32. Z. Anorg. Allg. Chem. 643, 1956–1961 (2017) M. Mallmann, J. Häusler, N. Cordes, W. Schnick, Ammonothermal synthesis of alkali-alkaline earth metal and akali-rare earth metal carbodiimides: K 5–x M x(CN 2) 2+x(HCN 2) 1–x ( M=Sr, Eu) and Na 4.32Sr 0.68(CN 2) 2.68(HCN 2) 0.32. Z. Anorg. Allg. Chem. 643, 1956–1961 (2017)
5.
go back to reference A.P. Purdy, S. Case, C. George, Ammonothermal crystal growth of Germanium and its alloys: synthesis of a hollow metallic crystal. Cryst. Growth Design 3, 121–124 (2003) CrossRef A.P. Purdy, S. Case, C. George, Ammonothermal crystal growth of Germanium and its alloys: synthesis of a hollow metallic crystal. Cryst. Growth Design 3, 121–124 (2003) CrossRef
6.
go back to reference H. Jacobs, D. Schmidt, High-pressure ammonolysis in solid-state chemistry. Curr. Top. Mater. Sci. 8, 387–427 (1982) H. Jacobs, D. Schmidt, High-pressure ammonolysis in solid-state chemistry. Curr. Top. Mater. Sci. 8, 387–427 (1982)
7.
go back to reference H. Jacobs, H. Kistrup, Über das System Kalium/Samarium/Ammoniak. Z. Anorg. Allg. Chem. 435, 127–136 (1977) CrossRef H. Jacobs, H. Kistrup, Über das System Kalium/Samarium/Ammoniak. Z. Anorg. Allg. Chem. 435, 127–136 (1977) CrossRef
8.
go back to reference H. Jacobs, U. Fink, Untersuchung des Systems Kalium/Europium/Ammoniak. Z. Anorg. Allg. Chem. 438, 151–159 (1978) CrossRef H. Jacobs, U. Fink, Untersuchung des Systems Kalium/Europium/Ammoniak. Z. Anorg. Allg. Chem. 438, 151–159 (1978) CrossRef
9.
go back to reference G. Linde, R. Juza, Amidometallate von Lanthan und Gadolinium und Umsetzung von Lanthan, Gadolinium und Scandium mit Ammoniak. Z. Anorg. Allg. Chem. 409, 191–198 (1974) CrossRef G. Linde, R. Juza, Amidometallate von Lanthan und Gadolinium und Umsetzung von Lanthan, Gadolinium und Scandium mit Ammoniak. Z. Anorg. Allg. Chem. 409, 191–198 (1974) CrossRef
10.
go back to reference A. Stuhr, H. Jacobs, R. Juza, Amide des Yttriums. Z. Anorg. Allg. Chem. 395, 291–300 (1973) CrossRef A. Stuhr, H. Jacobs, R. Juza, Amide des Yttriums. Z. Anorg. Allg. Chem. 395, 291–300 (1973) CrossRef
11.
go back to reference H. Jacobs, D. Schmidt, Struktur und Eigenschaften von perowskitartigen Caesiumamido-metallaten des Cers, Neodyms und Samariums Cs 3Ln 2(NH 2) 9. J. Less-Common Met. 76, 227–244 (1980) CrossRef H. Jacobs, D. Schmidt, Struktur und Eigenschaften von perowskitartigen Caesiumamido-metallaten des Cers, Neodyms und Samariums Cs 3Ln 2(NH 2) 9. J. Less-Common Met. 76, 227–244 (1980) CrossRef
12.
go back to reference B. Harbrecht, H. Jacobs, Hochdrucksynthese von Caesiumamidazid, Cs 2(NH 2)N 3 aus Caesiummetall und Ammoniak. Z. Anorg. Allg. Chem. 500, 181–187 (1983) CrossRef B. Harbrecht, H. Jacobs, Hochdrucksynthese von Caesiumamidazid, Cs 2(NH 2)N 3 aus Caesiummetall und Ammoniak. Z. Anorg. Allg. Chem. 500, 181–187 (1983) CrossRef
13.
go back to reference S. Pimputkar, T.F. Malkowski, S. Griffiths, A. Espenlaub, S. Suihkonen, J.S. Speck, S. Nakamura, Stability of materials in supercritical solutions. J. Supercrit. Fluids 110, 193–229 (2016) CrossRef S. Pimputkar, T.F. Malkowski, S. Griffiths, A. Espenlaub, S. Suihkonen, J.S. Speck, S. Nakamura, Stability of materials in supercritical solutions. J. Supercrit. Fluids 110, 193–229 (2016) CrossRef
14.
go back to reference K. Yoshida, K. Aoki, T. Fukuda, High-temperature acidic ammonothermal method for GaN crystal growth. J. Cryst. Growth 393, 93–97 (2013) CrossRef K. Yoshida, K. Aoki, T. Fukuda, High-temperature acidic ammonothermal method for GaN crystal growth. J. Cryst. Growth 393, 93–97 (2013) CrossRef
15.
go back to reference R. Dwiliński, J.M. Baranowski, M. Kamińska, R. Doradziński, J. Garczyński, L. Sierzputowski, On GaN crystallization by ammonotherma method. Acta Phys. Pol., A 90, 763–766 (1996) CrossRef R. Dwiliński, J.M. Baranowski, M. Kamińska, R. Doradziński, J. Garczyński, L. Sierzputowski, On GaN crystallization by ammonotherma method. Acta Phys. Pol., A 90, 763–766 (1996) CrossRef
16.
go back to reference D. Ketchum, J. Kolis, Crystal growth of gallium nitride in supercritical ammonia. J. Cryst. Growth 222, 431–434 (2001) CrossRef D. Ketchum, J. Kolis, Crystal growth of gallium nitride in supercritical ammonia. J. Cryst. Growth 222, 431–434 (2001) CrossRef
17.
go back to reference R.J. Jouet, A.P. Purdy, R.L. Wells, J.F. Janik, Preparation of phase pure cubic gallium nitride, c-GaN, by ammonothermal conversion of gallium imide, {Ga(NH) 3/2} n. J. Clust. Sci. 13, 469–486 (2002) CrossRef R.J. Jouet, A.P. Purdy, R.L. Wells, J.F. Janik, Preparation of phase pure cubic gallium nitride, c-GaN, by ammonothermal conversion of gallium imide, {Ga(NH) 3/2} n. J. Clust. Sci. 13, 469–486 (2002) CrossRef
18.
go back to reference M. Zając, J. Gosk, E. Grzanka, S. Stelmakh, M. Palczewska, A. Wysmołek, K. Korona, M. Kamińska, A. Twardowski, Ammonothermal synthesis of GaN doped with transition metal ions (Mn, Fe, Cr). J. Alloys Compd. 456, 324–338 (2008) CrossRef M. Zając, J. Gosk, E. Grzanka, S. Stelmakh, M. Palczewska, A. Wysmołek, K. Korona, M. Kamińska, A. Twardowski, Ammonothermal synthesis of GaN doped with transition metal ions (Mn, Fe, Cr). J. Alloys Compd. 456, 324–338 (2008) CrossRef
19.
go back to reference D. Peters, Ammonothermal synthesis of aluminum nitride. J. Cryst. Growth 104, 411–418 (1990) CrossRef D. Peters, Ammonothermal synthesis of aluminum nitride. J. Cryst. Growth 104, 411–418 (1990) CrossRef
20.
go back to reference Y.C. Lan, X.L. Chen, Y.G. Cao, Y.P. Xu, L. Xun, T. Xu, J.K. Liang, Low-temperature synthesis and photoluminescence of AlN. J. Cryst. Growth 207, 247–250 (1999) CrossRef Y.C. Lan, X.L. Chen, Y.G. Cao, Y.P. Xu, L. Xun, T. Xu, J.K. Liang, Low-temperature synthesis and photoluminescence of AlN. J. Cryst. Growth 207, 247–250 (1999) CrossRef
21.
go back to reference B. Wang, M. Callahan, Ammonothermal synthesis of III-nitride crystals. Cryst. Growth Des. 6, 1227–1246 (2006) CrossRef B. Wang, M. Callahan, Ammonothermal synthesis of III-nitride crystals. Cryst. Growth Des. 6, 1227–1246 (2006) CrossRef
22.
go back to reference R. Dwilinski, R. Doradzinski, J. Garcynski, L. Sierzputowski, M. Palczewska, A. Wysmolek, M. Kaminska, AMMONO method of BN, AlN and GaN synthesis and crystal growth. MRS Internet J. Nitride Semicond. Res. 3, e25 (1998) CrossRef R. Dwilinski, R. Doradzinski, J. Garcynski, L. Sierzputowski, M. Palczewska, A. Wysmolek, M. Kaminska, AMMONO method of BN, AlN and GaN synthesis and crystal growth. MRS Internet J. Nitride Semicond. Res. 3, e25 (1998) CrossRef
23.
go back to reference J. Hertrampf, P. Becker, M. Widenmeyer, A. Weidenkaff, E. Schlücker, R. Niewa, Ammonothermal crystal growth of indium nitride. Cryst. Growth Design 148, 2365–2369 (2018) CrossRef J. Hertrampf, P. Becker, M. Widenmeyer, A. Weidenkaff, E. Schlücker, R. Niewa, Ammonothermal crystal growth of indium nitride. Cryst. Growth Design 148, 2365–2369 (2018) CrossRef
24.
go back to reference J. Hertrampf, Intermediate in der ammonothermalen GaN-Kristallzucht durch Einsatz neuartiger Mineralisatoren und Synthesestrategie für Indiumnitrid. Doctoral Thesis, Universität Stuttgart, 2017 J. Hertrampf, Intermediate in der ammonothermalen GaN-Kristallzucht durch Einsatz neuartiger Mineralisatoren und Synthesestrategie für Indiumnitrid. Doctoral Thesis, Universität Stuttgart, 2017
25.
go back to reference G. Kreiner, H. Jacobs, Magnetische Struktur von η-Mn 3N 2. J. Alloys Compd. 183, 345–362 (1992) CrossRef G. Kreiner, H. Jacobs, Magnetische Struktur von η-Mn 3N 2. J. Alloys Compd. 183, 345–362 (1992) CrossRef
26.
go back to reference H. Jacobs, C. Stüve, Hochdrucksynthese der η-Phase im system Mn–N: Mn 3N 2. J. Less-Common Met. 96, 323–329 (1984) CrossRef H. Jacobs, C. Stüve, Hochdrucksynthese der η-Phase im system Mn–N: Mn 3N 2. J. Less-Common Met. 96, 323–329 (1984) CrossRef
27.
go back to reference A. Leineweber, H. Jacobs, S. Hull, Ordering of nitrogen in nickel nitride Ni 3N determined by neutron diffraction. Inorg. Chem. 40, 5818–5822 (2001) CrossRef A. Leineweber, H. Jacobs, S. Hull, Ordering of nitrogen in nickel nitride Ni 3N determined by neutron diffraction. Inorg. Chem. 40, 5818–5822 (2001) CrossRef
28.
go back to reference U. Zachwieja, H. Jacobs, Ammonothermalsynthese von Kupfernitrid, Cu 3N. J. Less-Common Met. 161, 175–184 (1990) CrossRef U. Zachwieja, H. Jacobs, Ammonothermalsynthese von Kupfernitrid, Cu 3N. J. Less-Common Met. 161, 175–184 (1990) CrossRef
29.
go back to reference H. Jacobs, D. Rechenbach, U. Zachwieja, Structure determination of γ-Fe 4N and ε-Fe 3N. J. Alloys Compd. 227, 10–17 (1995) CrossRef H. Jacobs, D. Rechenbach, U. Zachwieja, Structure determination of γ-Fe 4N and ε-Fe 3N. J. Alloys Compd. 227, 10–17 (1995) CrossRef
30.
go back to reference H. Jacobs, D. Rechenbach, U. Zachwieja, Untersuchungen zur Struktur und zum Zerfall von Eisennitriden—γ′-Fe 4N und ε-Fe 3N. Härterei Techn. Mitt. 50, 205–213 (1995) H. Jacobs, D. Rechenbach, U. Zachwieja, Untersuchungen zur Struktur und zum Zerfall von Eisennitriden—γ′-Fe 4N und ε-Fe 3N. Härterei Techn. Mitt. 50, 205–213 (1995)
31.
go back to reference H. Jacobs, J. Bock, Einkristallzüchtung von γ′-Fe 4N in überkritischem Ammoniak. J. Less-Common Met. 134, 215–220 (1987) CrossRef H. Jacobs, J. Bock, Einkristallzüchtung von γ′-Fe 4N in überkritischem Ammoniak. J. Less-Common Met. 134, 215–220 (1987) CrossRef
32.
go back to reference H. Jacobs, U. Zachwieja, Kupferpalladiumnitride, Cu 3Pd xN mit x = 0,020 und 0,989, Perowskite mit “bindender 3d 10-4d 10-Wechselwirkung”. J. Less-Common Met. 170, 185–190 (1991) CrossRef H. Jacobs, U. Zachwieja, Kupferpalladiumnitride, Cu 3Pd xN mit x = 0,020 und 0,989, Perowskite mit “bindender 3d 10-4d 10-Wechselwirkung”. J. Less-Common Met. 170, 185–190 (1991) CrossRef
33.
go back to reference J. Häusler, L. Neudert, M. Mallmann, R. Niklaus, A.-C. Kimmel, N.S.A. Alt, E. Schlücker, O. Oeckler, W. Schnick, Ammonothermal synthesis of novel nitrides: case study on CaGaSiN 3. Chem. Eur. J. 23, 2583–2590 (2017) CrossRef J. Häusler, L. Neudert, M. Mallmann, R. Niklaus, A.-C. Kimmel, N.S.A. Alt, E. Schlücker, O. Oeckler, W. Schnick, Ammonothermal synthesis of novel nitrides: case study on CaGaSiN 3. Chem. Eur. J. 23, 2583–2590 (2017) CrossRef
34.
go back to reference J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Low-temperature crystallization of Eu-doped red-emmiting CaAlSiN 3 from alloy-derived ammonometallates. Chem. Mater. 19, 3592–3594 (2007) CrossRef J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Low-temperature crystallization of Eu-doped red-emmiting CaAlSiN 3 from alloy-derived ammonometallates. Chem. Mater. 19, 3592–3594 (2007) CrossRef
35.
go back to reference T. Watanabe, K. Nonaka, J. Li, K. Kishida, M. Yoshimura, Low temperature ammonothermal synthesis of europium-doped SrAlSiN 3 for a nitride red phosphor. J. Ceram. Soc. Jpn. 120, 500–502 (2012) CrossRef T. Watanabe, K. Nonaka, J. Li, K. Kishida, M. Yoshimura, Low temperature ammonothermal synthesis of europium-doped SrAlSiN 3 for a nitride red phosphor. J. Ceram. Soc. Jpn. 120, 500–502 (2012) CrossRef
36.
go back to reference Y. Maruyama, Y. Yanase, T. Watanabe, Ammonothermal synthesis of charge-compensated SrAlSiN 3:Ce 3+ phosphor. J. Ceramic Soc. Jpn. 125, 399–401 (2017) CrossRef Y. Maruyama, Y. Yanase, T. Watanabe, Ammonothermal synthesis of charge-compensated SrAlSiN 3:Ce 3+ phosphor. J. Ceramic Soc. Jpn. 125, 399–401 (2017) CrossRef
37.
go back to reference Y. Maruyama, T. Watanabe, Low-temperature synthesis of CaAlSiN 3:Ce 3+ using the ammonothermal method. J. Ceramic Soc. Jpn. 124, 66–69 (2016) CrossRef Y. Maruyama, T. Watanabe, Low-temperature synthesis of CaAlSiN 3:Ce 3+ using the ammonothermal method. J. Ceramic Soc. Jpn. 124, 66–69 (2016) CrossRef
38.
go back to reference J. Li, T. Watanabe, N. Sakamoto, H.S. Wada, T. Setoyama, M. Yoshimura, Synthesis of a multinary nitride, Eu-doped CaAlSiN 3 from alloy at low temperatures. Chem. Mater. 20, 2095–2105 (2008) CrossRef J. Li, T. Watanabe, N. Sakamoto, H.S. Wada, T. Setoyama, M. Yoshimura, Synthesis of a multinary nitride, Eu-doped CaAlSiN 3 from alloy at low temperatures. Chem. Mater. 20, 2095–2105 (2008) CrossRef
39.
go back to reference J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Synthesis of Eu-doped CaAlSiN 3 from ammonometallates: effects of Sodium content and pressure. J. Amer. Ceram. Soc. 92, 344–349 (2009) CrossRef J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Synthesis of Eu-doped CaAlSiN 3 from ammonometallates: effects of Sodium content and pressure. J. Amer. Ceram. Soc. 92, 344–349 (2009) CrossRef
40.
go back to reference K. Nonaka, K. Kishida, C. Izawa, T. Watanabe, Low Temperature ammonothermal synthesis of europium-doped SrAlSiN 3: effect of mineralizers. J. Ceram. Soc. Jpn. 122, 17–20 (2014) CrossRef K. Nonaka, K. Kishida, C. Izawa, T. Watanabe, Low Temperature ammonothermal synthesis of europium-doped SrAlSiN 3: effect of mineralizers. J. Ceram. Soc. Jpn. 122, 17–20 (2014) CrossRef
41.
go back to reference U. Zachwieja, H. Jacobs, Kollumnarstrukturen bei Tri- und Diamminnitraten, [M(NH 3) 3]NO 3 und [M(NH 3) 2]NO 3 des einwertigen Kupfers und Silbers. Z. Anorg. Allg. Chem. 571, 37–50 (1989) CrossRef U. Zachwieja, H. Jacobs, Kollumnarstrukturen bei Tri- und Diamminnitraten, [M(NH 3) 3]NO 3 und [M(NH 3) 2]NO 3 des einwertigen Kupfers und Silbers. Z. Anorg. Allg. Chem. 571, 37–50 (1989) CrossRef
42.
go back to reference J. Häusler, S. Schimmel, P. Wellmann, W. Schnick, Ammonothermal synthesis of earth-abundant nitride semiconductors ZnSiN 2 and ZnGeN 2 and dissolution monitoring by in situ X-ray imaging. Chem. Eur. J. 23, 1–9 (2017) CrossRef J. Häusler, S. Schimmel, P. Wellmann, W. Schnick, Ammonothermal synthesis of earth-abundant nitride semiconductors ZnSiN 2 and ZnGeN 2 and dissolution monitoring by in situ X-ray imaging. Chem. Eur. J. 23, 1–9 (2017) CrossRef
43.
go back to reference J. Häusler, R. Niklaus, J. Minár, W. Schnick, Ammonothermal synthesis and optical properties of ternary nitride semiconductors Mg-IV-N 2, Mn-IV-N 2 and Li-IV 2-N 3 (IV = Si, Ge). Chem. Eur. J. 24, 1686–1693 (2018) CrossRef J. Häusler, R. Niklaus, J. Minár, W. Schnick, Ammonothermal synthesis and optical properties of ternary nitride semiconductors Mg-IV-N 2, Mn-IV-N 2 and Li-IV 2-N 3 (IV = Si, Ge). Chem. Eur. J. 24, 1686–1693 (2018) CrossRef
44.
go back to reference T. Toshima, K. Kishida, Y. Maruyama, T. Watanabe, Low-temperature synthesis of BaTaO 2N by an ammonothermal method. J. Ceram. Soc. Jpn. 125, 643–647 (2017) CrossRef T. Toshima, K. Kishida, Y. Maruyama, T. Watanabe, Low-temperature synthesis of BaTaO 2N by an ammonothermal method. J. Ceram. Soc. Jpn. 125, 643–647 (2017) CrossRef
45.
go back to reference C. Izawa, T. Kobayashi, K. Kishida, T. Watanabe, Ammonothermal synthesis and photocatalytic activity of lower valence cation-doped LaNbON 2. Adv. Mater. Sci. Eng. 465720 (2014) C. Izawa, T. Kobayashi, K. Kishida, T. Watanabe, Ammonothermal synthesis and photocatalytic activity of lower valence cation-doped LaNbON 2. Adv. Mater. Sci. Eng. 465720 (2014)
46.
go back to reference T. Watanabe, L. Tajima, J.W. Li, N. Matsushita, M. Yoshimura, Low-temperature ammonothermal Synthesis of LaTaO 2N. Chem. Lett. 40, 1101–1102 (2011) CrossRef T. Watanabe, L. Tajima, J.W. Li, N. Matsushita, M. Yoshimura, Low-temperature ammonothermal Synthesis of LaTaO 2N. Chem. Lett. 40, 1101–1102 (2011) CrossRef
47.
go back to reference N. Cordes, W. Schnick, Ammonothermal synthesis of crystalline oxonitride perovskites LnTaON 2 ( Ln=La, Ce, Pr, Nd, Sm, Gd). Chem. Eur. J. 23, 11410–11415 (2017) CrossRef N. Cordes, W. Schnick, Ammonothermal synthesis of crystalline oxonitride perovskites LnTaON 2 ( Ln=La, Ce, Pr, Nd, Sm, Gd). Chem. Eur. J. 23, 11410–11415 (2017) CrossRef
48.
go back to reference B. Hertweck, T.G. Steigerwald, N.S.A. Alt, E. Schluecker, Corrosive degeneration of autoclaves for the ammonothermal synthesis: experimental approach and first results. Chem. Eng. Technol. 37, 1903–1906 (2014) CrossRef B. Hertweck, T.G. Steigerwald, N.S.A. Alt, E. Schluecker, Corrosive degeneration of autoclaves for the ammonothermal synthesis: experimental approach and first results. Chem. Eng. Technol. 37, 1903–1906 (2014) CrossRef
49.
go back to reference B. Hertweck, S. Zhang, T.G. Steigerwald, N.S.A. Alt, R. Niewa, E. Schluecker, Applicability of metals as liner materials for ammonoacidic crystal growth. Chem. Eng. Technol. 37, 1835–1844 (2014) CrossRef B. Hertweck, S. Zhang, T.G. Steigerwald, N.S.A. Alt, R. Niewa, E. Schluecker, Applicability of metals as liner materials for ammonoacidic crystal growth. Chem. Eng. Technol. 37, 1835–1844 (2014) CrossRef
50.
go back to reference B. Hertweck, T.G. Steigerwald, N.S.A. Alt, E. Schluecker, Different corrosion behavior of autoclaves made of nickel base alloy 718 in ammonobasic and ammonoacidic environments. J. Supercrit. Fluids 95, 158–166 (2014) CrossRef B. Hertweck, T.G. Steigerwald, N.S.A. Alt, E. Schluecker, Different corrosion behavior of autoclaves made of nickel base alloy 718 in ammonobasic and ammonoacidic environments. J. Supercrit. Fluids 95, 158–166 (2014) CrossRef
51.
go back to reference B. Hertweck, S. Schimmel, T. G. Steigerwald, N.S.A. Alt, P. J. Wellmann E. Schluecker, Ceramic liner technology for ammonoacidic synthesis. J. Supercrit. Fluids. 99, 76–87 (2015) B. Hertweck, S. Schimmel, T. G. Steigerwald, N.S.A. Alt, P. J. Wellmann E. Schluecker, Ceramic liner technology for ammonoacidic synthesis. J. Supercrit. Fluids. 99, 76–87 (2015)
52.
go back to reference S. Schimmel, U. Künecke, M. Meisel, B. Hertweck, T.G. Steigerwald, C. Nebel, N.S.A. Alt, E. Schluecker, P. Wellmann, Chemical stability of carbon-based inorganic materials for in situ x-ray investigations of ammonothermal crystal growth of nitrides. J. Cryst. Growth 456, 33–42 (2016) CrossRef S. Schimmel, U. Künecke, M. Meisel, B. Hertweck, T.G. Steigerwald, C. Nebel, N.S.A. Alt, E. Schluecker, P. Wellmann, Chemical stability of carbon-based inorganic materials for in situ x-ray investigations of ammonothermal crystal growth of nitrides. J. Cryst. Growth 456, 33–42 (2016) CrossRef
53.
go back to reference T.F. Malkowski, S. Pimputkar, J.S. Speck, S.P. DenBaars, S. Nakamura, Acidic ammonothermal growth of gallium nitride in a liner-free molybdenum alloy autoclave. J. Cryst. Growth 456, 21–26 (2016) CrossRef T.F. Malkowski, S. Pimputkar, J.S. Speck, S.P. DenBaars, S. Nakamura, Acidic ammonothermal growth of gallium nitride in a liner-free molybdenum alloy autoclave. J. Cryst. Growth 456, 21–26 (2016) CrossRef
54.
go back to reference S. Pimputkar, J.S. Speck, S. Nakamura, Basic ammonothermal GaN growth in molybdenum capsules. J. Cryst. Growth 456, 15–20 (2016) CrossRef S. Pimputkar, J.S. Speck, S. Nakamura, Basic ammonothermal GaN growth in molybdenum capsules. J. Cryst. Growth 456, 15–20 (2016) CrossRef
55.
go back to reference S. Suihkonen, S. Pimputkar, S. Sintonen, F. Tuomisto, Defects in single crystalline ammonothermal gallium nitride. Adv. Electron. Mater. 3, 1600496 (2017) CrossRef S. Suihkonen, S. Pimputkar, S. Sintonen, F. Tuomisto, Defects in single crystalline ammonothermal gallium nitride. Adv. Electron. Mater. 3, 1600496 (2017) CrossRef
56.
go back to reference D. Ehrentraut, N. Hoshino, Y. Kagamitani, A. Yoshikawa, T. Fukuda, H. Itoh, S. Kawabata, Temperature effect of ammonium halogenides as mineralizers on the phase stability of gallium nitride synthezised under ammonothermal conditions. J. Mater. Chem. 17, 886–893 (2007) CrossRef D. Ehrentraut, N. Hoshino, Y. Kagamitani, A. Yoshikawa, T. Fukuda, H. Itoh, S. Kawabata, Temperature effect of ammonium halogenides as mineralizers on the phase stability of gallium nitride synthezised under ammonothermal conditions. J. Mater. Chem. 17, 886–893 (2007) CrossRef
57.
go back to reference A. Purdy, Growth of cubic GaN crystals from hexagonal GaN feedstock. J. Cryst. Growth 281, 355–363 (2005) CrossRef A. Purdy, Growth of cubic GaN crystals from hexagonal GaN feedstock. J. Cryst. Growth 281, 355–363 (2005) CrossRef
58.
go back to reference A.P. Purdy, R.J. Jouet, C.F. George, Ammonothermal recrystallization of gallium nitride with acidic mineralizers. Cryst. Growth Design 2, 141–145 (2002) CrossRef A.P. Purdy, R.J. Jouet, C.F. George, Ammonothermal recrystallization of gallium nitride with acidic mineralizers. Cryst. Growth Design 2, 141–145 (2002) CrossRef
59.
go back to reference A.P. Purdy, Ammonothermal synthesis of cubic gallium nitride. Chem. Mater. 11, 1648–1651 (1999) CrossRef A.P. Purdy, Ammonothermal synthesis of cubic gallium nitride. Chem. Mater. 11, 1648–1651 (1999) CrossRef
60.
go back to reference J.A. Jegier, S. McKernan, A.P. Purdy, W.L. Gladfelter, Ammonothermal conversion of cyclotrigallazane to GaN: synthesis of nanocrystalline and Cubic GaN from [H 2GaNH 2] 3. Chem. Mater. 12, 1003–1010 (2000) CrossRef J.A. Jegier, S. McKernan, A.P. Purdy, W.L. Gladfelter, Ammonothermal conversion of cyclotrigallazane to GaN: synthesis of nanocrystalline and Cubic GaN from [H 2GaNH 2] 3. Chem. Mater. 12, 1003–1010 (2000) CrossRef
61.
go back to reference S. Schimmel, M. Lindner, T.G. Steigerwald, B. Hertweck, T.M.M. Richter, U. Künecke, N.S.A. Alt, R. Niewa, E. Schlücker, P. Wellmann, Determination of GaN solubility in supercritical ammonia with NH 4F and NH 4Cl mineralizer by in situ x-ray imaging of crystal dissolution. J. Cryst. Growth 418, 64–69 (2015) CrossRef S. Schimmel, M. Lindner, T.G. Steigerwald, B. Hertweck, T.M.M. Richter, U. Künecke, N.S.A. Alt, R. Niewa, E. Schlücker, P. Wellmann, Determination of GaN solubility in supercritical ammonia with NH 4F and NH 4Cl mineralizer by in situ x-ray imaging of crystal dissolution. J. Cryst. Growth 418, 64–69 (2015) CrossRef
62.
go back to reference D. Ehrentraut, T. Fukuda, Ammonothermal crystal growth of gallium nitride: a brief discussion of critical issues. J. Cryst. Growth 312, 2514–2518 (2010) CrossRef D. Ehrentraut, T. Fukuda, Ammonothermal crystal growth of gallium nitride: a brief discussion of critical issues. J. Cryst. Growth 312, 2514–2518 (2010) CrossRef
63.
go back to reference S. Griffiths, S. Pimputkar, J.S. Speck, S. Nakamura, On the solubility of gallium nitride in supercritical ammonia-sodium solutions. J. Cryst. Growth 456, 5–14 (2016) CrossRef S. Griffiths, S. Pimputkar, J.S. Speck, S. Nakamura, On the solubility of gallium nitride in supercritical ammonia-sodium solutions. J. Cryst. Growth 456, 5–14 (2016) CrossRef
64.
go back to reference D. Tomida, K. Kuroda, N. Hoshino, K. Suzuki, Y. Kagamitani, T. Ishiguro, T. Fukuda, C. Yokoyama, Solubility of GaN in supercritical ammonia with ammonium chloride as a mineralizer. J. Cryst. Growth 312, 3161–3164 (2010) CrossRef D. Tomida, K. Kuroda, N. Hoshino, K. Suzuki, Y. Kagamitani, T. Ishiguro, T. Fukuda, C. Yokoyama, Solubility of GaN in supercritical ammonia with ammonium chloride as a mineralizer. J. Cryst. Growth 312, 3161–3164 (2010) CrossRef
65.
go back to reference D. Tomida, T. Kuribayashi, K. Suzuki, Y. Kagamitani, T. Ishiguro, T. Fukuda, C. Yokoyama, Effect of halogen species of acidic mineralizer on solubility of GaN in supercritical ammonia. J. Cryst. Growth 325, 52–54 (2011) CrossRef D. Tomida, T. Kuribayashi, K. Suzuki, Y. Kagamitani, T. Ishiguro, T. Fukuda, C. Yokoyama, Effect of halogen species of acidic mineralizer on solubility of GaN in supercritical ammonia. J. Cryst. Growth 325, 52–54 (2011) CrossRef
66.
go back to reference S. Schimmel, M. Koch, P. Macher, A.-C.L. Kimmel, T.C. Steigerwald, N.S.A. Alt, E. Schlücker, P. Wellmann, Solubility and dissolution kinetics of GaN in supercritical ammonia in presence of ammonoacidic and ammonobasic mineralizers. J. Cryst. Growth 479, 59–66 (2017) CrossRef S. Schimmel, M. Koch, P. Macher, A.-C.L. Kimmel, T.C. Steigerwald, N.S.A. Alt, E. Schlücker, P. Wellmann, Solubility and dissolution kinetics of GaN in supercritical ammonia in presence of ammonoacidic and ammonobasic mineralizers. J. Cryst. Growth 479, 59–66 (2017) CrossRef
67.
go back to reference H. Hunt, L. Boncyk, Liquid ammonia as a solvent. III. The solubility of inorganic salts at 25°. J. Amer. Chem. Soc. 55, 3528–3530 (1933) H. Hunt, L. Boncyk, Liquid ammonia as a solvent. III. The solubility of inorganic salts at 25°. J. Amer. Chem. Soc. 55, 3528–3530 (1933)
68.
go back to reference H. Hunt, Liquid ammonia as a solvent. I. The solubility of inorganic salts at 25°. J. Am. Chem. Soc. 54, 3509–3512 (1932) H. Hunt, Liquid ammonia as a solvent. I. The solubility of inorganic salts at 25°. J. Am. Chem. Soc. 54, 3509–3512 (1932)
69.
go back to reference J.B. Shim, G.H. Kim, Y.K. Lee, Basic ammonothermal growth of bulk GaN single crystal using sodium mineralizers. J. Cryst. Growth 478, 85–88 (2017) CrossRef J.B. Shim, G.H. Kim, Y.K. Lee, Basic ammonothermal growth of bulk GaN single crystal using sodium mineralizers. J. Cryst. Growth 478, 85–88 (2017) CrossRef
70.
go back to reference J. Hertrampf, N.S.A. Alt, E. Schlücker, M. Knetzger, E. Meissner, R. Niewa, Ammonothermal synthesis of GaN using Ba(NH 2) 2 as mineralizer. J. Cryst. Growth 456, 2–4 (2016) CrossRef J. Hertrampf, N.S.A. Alt, E. Schlücker, M. Knetzger, E. Meissner, R. Niewa, Ammonothermal synthesis of GaN using Ba(NH 2) 2 as mineralizer. J. Cryst. Growth 456, 2–4 (2016) CrossRef
71.
go back to reference J. Hertrampf, N. S. A. Alt, E. Schlücker, R. Niewa, Three solid modifications of Ba[Ga(NH 2) 4] 2: a soluble intermediate in ammonothermal GaN crystal growth. Eur. J. Inorg. Chem. 902–909 (2017) J. Hertrampf, N. S. A. Alt, E. Schlücker, R. Niewa, Three solid modifications of Ba[Ga(NH 2) 4] 2: a soluble intermediate in ammonothermal GaN crystal growth. Eur. J. Inorg. Chem. 902–909 (2017)
72.
go back to reference B. Fröhling, G. Kreiner, H. Jacobs, Synthese und Kristallstruktur von Mangan(II)- und Zinkamid, Mn(NH 2) 2 und Zn(NH 2) 2. Z. Anorg. Allg. Chem. 625, 211–216 (1999) CrossRef B. Fröhling, G. Kreiner, H. Jacobs, Synthese und Kristallstruktur von Mangan(II)- und Zinkamid, Mn(NH 2) 2 und Zn(NH 2) 2. Z. Anorg. Allg. Chem. 625, 211–216 (1999) CrossRef
73.
go back to reference P.W. Schenk, H. Tulhoff, Zur Kenntnis von Lösungssystemen in tief siedenden Lösungsmitteln 2. Mitteilung: Die Systeme Alkaliamid/Ammonia. Ber. Bunsenges. 71, 210–214 (1967) P.W. Schenk, H. Tulhoff, Zur Kenntnis von Lösungssystemen in tief siedenden Lösungsmitteln 2. Mitteilung: Die Systeme Alkaliamid/Ammonia. Ber. Bunsenges. 71, 210–214 (1967)
74.
go back to reference S. Zhang, F. Hintze, W. Schnick, R. Niewa, Intermediates in ammonothermal GaN crystal growth under ammonoacidic conditions. Eur. J. Inorg. Chem. 5387–5399 (2013) S. Zhang, F. Hintze, W. Schnick, R. Niewa, Intermediates in ammonothermal GaN crystal growth under ammonoacidic conditions. Eur. J. Inorg. Chem. 5387–5399 (2013)
75.
go back to reference S. Zhang, N.S.A. Alt, E. Schlücker, R. Niewa, Novel alkali metal amidogallates as intermediates in ammonothermal GaN crystal growth. J. Cryst. Growth 403, 22–28 (2014) CrossRef S. Zhang, N.S.A. Alt, E. Schlücker, R. Niewa, Novel alkali metal amidogallates as intermediates in ammonothermal GaN crystal growth. J. Cryst. Growth 403, 22–28 (2014) CrossRef
76.
go back to reference G. Demazeau, G. Goglio, A. Denis, A. Largeteau, Solvothermal synthesis: a new route for preparing nitrides. J. Phys. Cond. Matter. 14, 11085–11088 (2002) CrossRef G. Demazeau, G. Goglio, A. Denis, A. Largeteau, Solvothermal synthesis: a new route for preparing nitrides. J. Phys. Cond. Matter. 14, 11085–11088 (2002) CrossRef
77.
go back to reference C. Yokoyama, T. Hashimoto, Q. Bao, Y. Kagamitani, K. Qiao, Ammonothermal crystal growth of gallium nitride using ZnCl 2 as mineralizer. Cryst. Eng. Commun. 13, 5306–5308 (2011) CrossRef C. Yokoyama, T. Hashimoto, Q. Bao, Y. Kagamitani, K. Qiao, Ammonothermal crystal growth of gallium nitride using ZnCl 2 as mineralizer. Cryst. Eng. Commun. 13, 5306–5308 (2011) CrossRef
78.
go back to reference J. Jander, Anorganische und allgemeine Chemie in flüssigem Ammoniak, in Chemistry in Nonaqueos Ionizing Solvents, vol. 1 Chemistry in Anhydrous Liquid Ammonia, ed. by G. Jander, H. Spandau, C. C. Addison (Vieweg & Sohn, Braunschweig, 1966), pp. 1–561 J. Jander, Anorganische und allgemeine Chemie in flüssigem Ammoniak, in Chemistry in Nonaqueos Ionizing Solvents, vol. 1 Chemistry in Anhydrous Liquid Ammonia, ed. by G. Jander, H. Spandau, C. C. Addison (Vieweg & Sohn, Braunschweig, 1966), pp. 1–561
79.
go back to reference S.R. Gunn, L.G. Green, Heats of solution in liquid ammonia at 25 °C. J. Phys. Chem. 64, 1066–1069 (1960) CrossRef S.R. Gunn, L.G. Green, Heats of solution in liquid ammonia at 25 °C. J. Phys. Chem. 64, 1066–1069 (1960) CrossRef
80.
go back to reference R. Dwiliński, A. Wysmolek, J. Baranowski, A. Kamińska, R. Doradziński, J. Garczyński, L. Sierzputowski, GaN synthesis by ammonothermal method. Acta Phys. Pol., A 88, 833–836 (1995) CrossRef R. Dwiliński, A. Wysmolek, J. Baranowski, A. Kamińska, R. Doradziński, J. Garczyński, L. Sierzputowski, GaN synthesis by ammonothermal method. Acta Phys. Pol., A 88, 833–836 (1995) CrossRef
81.
go back to reference T. Hashimoto, F. Wu, J.S. Speck, S. Nakamura, A GaN bulk crystal with improved structural quality grown by the ammonothermal method. Nat. Mater. 6, 568–571 (2007) CrossRef T. Hashimoto, F. Wu, J.S. Speck, S. Nakamura, A GaN bulk crystal with improved structural quality grown by the ammonothermal method. Nat. Mater. 6, 568–571 (2007) CrossRef
82.
go back to reference T. Hashimoto, F. Wu, M. Saito, K. Fujito, J.S. Speck, S. Nakamura, Status and perspectives of the ammonothermal growth of GaN substrates. J. Cryst. Growth 310, 876–880 (2008) CrossRef T. Hashimoto, F. Wu, M. Saito, K. Fujito, J.S. Speck, S. Nakamura, Status and perspectives of the ammonothermal growth of GaN substrates. J. Cryst. Growth 310, 876–880 (2008) CrossRef
83.
go back to reference S. Pimputkar, S. Suihkonen, M. Imade, Y. Mori, J.S. Speck, S. Nakamura, Free electron concentration dependent sub-bandgap optical adsorption characterization of bulk GaN crystals. J. Cryst. Growth 432, 49–53 (2015) CrossRef S. Pimputkar, S. Suihkonen, M. Imade, Y. Mori, J.S. Speck, S. Nakamura, Free electron concentration dependent sub-bandgap optical adsorption characterization of bulk GaN crystals. J. Cryst. Growth 432, 49–53 (2015) CrossRef
84.
go back to reference W. Lin, J. Huang, D. Chen, L. Zhang, J. Huang, F. Huang, Synthesis and characterization of nanocrystalline GaN by ammonothermal method using CsNH 2 as mineralizer. J. Nanosci. Nanotechnol. 10, 5741–5745 (2010) CrossRef W. Lin, J. Huang, D. Chen, L. Zhang, J. Huang, F. Huang, Synthesis and characterization of nanocrystalline GaN by ammonothermal method using CsNH 2 as mineralizer. J. Nanosci. Nanotechnol. 10, 5741–5745 (2010) CrossRef
85.
go back to reference P. Molinie, R. Brec, J. Rouxel, P. Herpin, Structures des Amidoaluminates Alcalins MAl(NH 2) 4 (M = Na, K, Cs). Structure de l’ Amidogallate de Sodium NaGa(NH 2) 4. Acta Crystallogr. B 29, 925–934 (1973) P. Molinie, R. Brec, J. Rouxel, P. Herpin, Structures des Amidoaluminates Alcalins MAl(NH 2) 4 (M = Na, K, Cs). Structure de l’ Amidogallate de Sodium NaGa(NH 2) 4. Acta Crystallogr. B 29, 925–934 (1973)
86.
go back to reference R. Guarino, J. Rouxel, L’amidogallate de sodium. C. R. Acad. Sci. Paris Série C 264, 1488–1491 (1967) R. Guarino, J. Rouxel, L’amidogallate de sodium. C. R. Acad. Sci. Paris Série C 264, 1488–1491 (1967)
87.
go back to reference G. Lucazeau, A. Novak, P. Molinie, J. Rouxel, Spectres de vibration et structure d’un cristal d’amidogallate de sodium. J. Mol. Struct. 20, 303–311 (1974) CrossRef G. Lucazeau, A. Novak, P. Molinie, J. Rouxel, Spectres de vibration et structure d’un cristal d’amidogallate de sodium. J. Mol. Struct. 20, 303–311 (1974) CrossRef
88.
go back to reference H. Jacobs, B. Nöcker, Redetermination of structure and properties of the isotypic sodium tetramide metallates of aluminium and gallium. Z. Anorg. Allg. Chem. 619, 381–386 (1993) CrossRef H. Jacobs, B. Nöcker, Redetermination of structure and properties of the isotypic sodium tetramide metallates of aluminium and gallium. Z. Anorg. Allg. Chem. 619, 381–386 (1993) CrossRef
89.
go back to reference P. Molinie, R. Brec, J. Rouxel, Le pentaamidogallate de sodium Na 2Ga(NH) 5. C. R. Acad. Sci. Paris Série C 274, 1388–1391 (1972) P. Molinie, R. Brec, J. Rouxel, Le pentaamidogallate de sodium Na 2Ga(NH) 5. C. R. Acad. Sci. Paris Série C 274, 1388–1391 (1972)
90.
go back to reference Y. Lan, X.L. Chen, Y. Xu, Y. Cao, F. Huang, Syntheses and structure of nanocrystalline gallium nitride obtained from ammonothermal method using lithium metal as mineralizator. Mater. Res. Bull. 35, 2325–2330 (2000) CrossRef Y. Lan, X.L. Chen, Y. Xu, Y. Cao, F. Huang, Syntheses and structure of nanocrystalline gallium nitride obtained from ammonothermal method using lithium metal as mineralizator. Mater. Res. Bull. 35, 2325–2330 (2000) CrossRef
91.
go back to reference B. Wang, M.J. Callahan, Transport growth of GaN crystals by the ammonothermal technique using various nutrients. J. Cryst. Growth 291, 455–460 (2006) CrossRef B. Wang, M.J. Callahan, Transport growth of GaN crystals by the ammonothermal technique using various nutrients. J. Cryst. Growth 291, 455–460 (2006) CrossRef
92.
go back to reference S. Zhang, Intermediates during the Formation of GaN under Ammonothermal Conditions. Doctoral Dissertation, Universität Stuttgart, 2014 S. Zhang, Intermediates during the Formation of GaN under Ammonothermal Conditions. Doctoral Dissertation, Universität Stuttgart, 2014
93.
go back to reference A. Tenten, Amide und Nitride von Nickel, Palladium und Platin sowie von Aluminium, Gallium und Indium. Doctoral Dissertation, Universität Dortmund, 1991 A. Tenten, Amide und Nitride von Nickel, Palladium und Platin sowie von Aluminium, Gallium und Indium. Doctoral Dissertation, Universität Dortmund, 1991
94.
go back to reference R. Guarino, J. Rouxel, L’amidogallate de potassium KGa(NH 2) 4 et l’imidogallate KGa(NH) 2. L’obtention de l’amidure de gallium Ga(NH 2) 3. Bull. Soc. Chim. Fr. 7, 2284–2287 (1969) R. Guarino, J. Rouxel, L’amidogallate de potassium KGa(NH 2) 4 et l’imidogallate KGa(NH) 2. L’obtention de l’amidure de gallium Ga(NH 2) 3. Bull. Soc. Chim. Fr. 7, 2284–2287 (1969)
95.
go back to reference B. Wang, M.J. Callahan, K.D. Rakes, L.O. Bouthillette, S.-Q. Wang, D.F. Bliss, J.W. Kolis, Ammonothermal growth of GaN crystals in alkaline solutions. J. Cryst. Growth 287, 376–380 (2006) CrossRef B. Wang, M.J. Callahan, K.D. Rakes, L.O. Bouthillette, S.-Q. Wang, D.F. Bliss, J.W. Kolis, Ammonothermal growth of GaN crystals in alkaline solutions. J. Cryst. Growth 287, 376–380 (2006) CrossRef
96.
go back to reference T. Hashimoto, F. Wu, J.S. Speck, S. Nakamura, Growth of bulk GaN Crystals by the basic ammonothermal method. Jpn. J. Appl. Phys. 2, 889–891 (2007) CrossRef T. Hashimoto, F. Wu, J.S. Speck, S. Nakamura, Growth of bulk GaN Crystals by the basic ammonothermal method. Jpn. J. Appl. Phys. 2, 889–891 (2007) CrossRef
97.
go back to reference H. Jacobs, K. Jänichen, C. Hadenfeldt, R. Juza, Lithiumaluminiumamid, LiAl(NH 2) 4, Darstellung, röntgenographische Untersuchung, Infrarotspektrum und thermische Zersetzung. Z. Anorg. Allg. Chem. 531, 125–139 (1985) CrossRef H. Jacobs, K. Jänichen, C. Hadenfeldt, R. Juza, Lithiumaluminiumamid, LiAl(NH 2) 4, Darstellung, röntgenographische Untersuchung, Infrarotspektrum und thermische Zersetzung. Z. Anorg. Allg. Chem. 531, 125–139 (1985) CrossRef
98.
go back to reference A. Tenten, H. Jacobs, Strukturen und thermisches Verhalten von Kaliumtetraaluminat, α- und β-K[Al(NH 2) 4]. 28. Diskussionstagung der Arbeitsgemeinschaft Kristallographie, Hannover, Germany, 1989, pp. 289–290 A. Tenten, H. Jacobs, Strukturen und thermisches Verhalten von Kaliumtetraaluminat, α- und β-K[Al(NH 2) 4]. 28. Diskussionstagung der Arbeitsgemeinschaft Kristallographie, Hannover, Germany, 1989, pp. 289–290
99.
go back to reference H. Cao, J. Guo, F. Chang, C. Pistidda, W. Zhou, X. Zhang, A. Santoru, H. Wu, N. Schell, R. Niewa, P. Chen, T. Klassen, M. Dornheim, Transition and Alkali metal complex ternary amides for ammonia synthesis and decomposition. Chem. Eur. J. 23, 9766–9771 (2017) CrossRef H. Cao, J. Guo, F. Chang, C. Pistidda, W. Zhou, X. Zhang, A. Santoru, H. Wu, N. Schell, R. Niewa, P. Chen, T. Klassen, M. Dornheim, Transition and Alkali metal complex ternary amides for ammonia synthesis and decomposition. Chem. Eur. J. 23, 9766–9771 (2017) CrossRef
100.
go back to reference T.M.M. Richter, S. Zhang, R. Niewa, Ammonothermal synthesis of dimorphic K 2[Zn(NH 2) 4]. Z. Kristallogr. 228, 351–358 (2013) T.M.M. Richter, S. Zhang, R. Niewa, Ammonothermal synthesis of dimorphic K 2[Zn(NH 2) 4]. Z. Kristallogr. 228, 351–358 (2013)
101.
go back to reference B. Fröhling, H. Jacobs, Positions of the protons in potassium tetraamidozincate, K 2[Zn(NH 2) 4]. Z. Anorg. Allg. Chem. 623, 1103–1107 (1997) CrossRef B. Fröhling, H. Jacobs, Positions of the protons in potassium tetraamidozincate, K 2[Zn(NH 2) 4]. Z. Anorg. Allg. Chem. 623, 1103–1107 (1997) CrossRef
102.
go back to reference L. Brisseau, J. Rouxel, Les amidozincates Na 2Zn(NH 2) 4 et K 2Zn(NH 2) 4. C. R. Acad. Sci. Paris Série C 268, 2308–2311 (1969) L. Brisseau, J. Rouxel, Les amidozincates Na 2Zn(NH 2) 4 et K 2Zn(NH 2) 4. C. R. Acad. Sci. Paris Série C 268, 2308–2311 (1969)
103.
go back to reference L. Guémas, P. Palvadeau, Étude structurale de l’amidozincate de potassium K 2Zn(NH 2) 4. Rev. Chim. Min. 14, 381–386 (1977) L. Guémas, P. Palvadeau, Étude structurale de l’amidozincate de potassium K 2Zn(NH 2) 4. Rev. Chim. Min. 14, 381–386 (1977)
104.
go back to reference J. Hertrampf, E. Schlücker, D. Gudat, R. Niewa, Dissolved species in ammonothermal GaN crystal growth: stepwise condensation of [Ga(NH 2) 4] −. Cryst. Growth Design 17, 4855–4863 (2017) CrossRef J. Hertrampf, E. Schlücker, D. Gudat, R. Niewa, Dissolved species in ammonothermal GaN crystal growth: stepwise condensation of [Ga(NH 2) 4] . Cryst. Growth Design 17, 4855–4863 (2017) CrossRef
105.
go back to reference D. Zahn, On the solvation of metal ions in liquid ammonia: a molecular simulation study of M(NH 2) x(NH 3) y complexes as functions of pH. RSC Adv. 7, 54063–54067 (2017) CrossRef D. Zahn, On the solvation of metal ions in liquid ammonia: a molecular simulation study of M(NH 2) x(NH 3) y complexes as functions of pH. RSC Adv. 7, 54063–54067 (2017) CrossRef
106.
go back to reference J. Rouxel, P. Palvadeau, Les amidoaluminates SrAl 2(NH 2) 8 et BaAl 2(NH 2) 8. C. R. Acad. Sci. Paris Série C 272, 63–66 (1971) J. Rouxel, P. Palvadeau, Les amidoaluminates SrAl 2(NH 2) 8 et BaAl 2(NH 2) 8. C. R. Acad. Sci. Paris Série C 272, 63–66 (1971)
107.
go back to reference J. Rouxel, R. Brec, L’amidoaluminate et L’imidoaluminate de lithium. C. R. Acad. Sci. Paris Série C 262, 1070–1074 (1966) J. Rouxel, R. Brec, L’amidoaluminate et L’imidoaluminate de lithium. C. R. Acad. Sci. Paris Série C 262, 1070–1074 (1966)
108.
go back to reference P. Palvadeau, M. Drew, G. Charlesworth, J. Rouxel, Structure de l’amidoaluminate CaAl 2(NH 2) 8, NH 3. C. R. Acad. Sci. Paris Série C 275, 881–884 (1972) P. Palvadeau, M. Drew, G. Charlesworth, J. Rouxel, Structure de l’amidoaluminate CaAl 2(NH 2) 8, NH 3. C. R. Acad. Sci. Paris Série C 275, 881–884 (1972)
109.
go back to reference T. Ono, K. Shimoda, M. Tsubota, S. Kohara, T. Ichikawa, K.-I. Kojima, M. Tansho, T. Shimizu, Y. Kojima, Ammonia desorption property and structural changes of LiAl(NH 2) 4 on thermal decomposition. J. Phys. Chem. C 115, 10284–10291 (2011) CrossRef T. Ono, K. Shimoda, M. Tsubota, S. Kohara, T. Ichikawa, K.-I. Kojima, M. Tansho, T. Shimizu, Y. Kojima, Ammonia desorption property and structural changes of LiAl(NH 2) 4 on thermal decomposition. J. Phys. Chem. C 115, 10284–10291 (2011) CrossRef
110.
go back to reference K. Ikeda, T. Otomo, H. Ohshita, N. Kaneko, M. Tsubota, K. Suzuya, F. Fujisaki, T. Ono, T. Yamanaka, K. Shimoda, Local structural analysis on decomposition process of LiAl(ND 2) 4. Mater. Trans. 55, 1129–1133 (2014) CrossRef K. Ikeda, T. Otomo, H. Ohshita, N. Kaneko, M. Tsubota, K. Suzuya, F. Fujisaki, T. Ono, T. Yamanaka, K. Shimoda, Local structural analysis on decomposition process of LiAl(ND 2) 4. Mater. Trans. 55, 1129–1133 (2014) CrossRef
111.
go back to reference D. Ehrentraut, Y. Kagamitani, C. Yokoyama, T. Fukuda, Physico-chemical features of the ammonothermal growth of GaN. J. Cryst. Growth 310, 891–895 (2008) CrossRef D. Ehrentraut, Y. Kagamitani, C. Yokoyama, T. Fukuda, Physico-chemical features of the ammonothermal growth of GaN. J. Cryst. Growth 310, 891–895 (2008) CrossRef
112.
go back to reference K. Yoshida, K. Aoki, T. Fukuda, High-temperature acidic ammonothermal method for GaN crystal growth. J. Cryst. Growth 393, 93–97 (2014) CrossRef K. Yoshida, K. Aoki, T. Fukuda, High-temperature acidic ammonothermal method for GaN crystal growth. J. Cryst. Growth 393, 93–97 (2014) CrossRef
113.
go back to reference Q. Bao, M. Saito, K. Hazu, K. Furusawa, Y. Kagamitani, R. Kayano, D. Tomida, K. Qiao, T. Ishiguro, C. Yokoyama, S.F. Chichibu, Ammonothermal crystal growth of GaN using an NH 4F mineralizer. Cryst. Growth Design 13, 4158–4161 (2013) CrossRef Q. Bao, M. Saito, K. Hazu, K. Furusawa, Y. Kagamitani, R. Kayano, D. Tomida, K. Qiao, T. Ishiguro, C. Yokoyama, S.F. Chichibu, Ammonothermal crystal growth of GaN using an NH 4F mineralizer. Cryst. Growth Design 13, 4158–4161 (2013) CrossRef
114.
go back to reference P. Becker, Chemie der ammonosauren GaN-Synthese. Master-Thesis, Universität Stuttgart, 2017 P. Becker, Chemie der ammonosauren GaN-Synthese. Master-Thesis, Universität Stuttgart, 2017
115.
go back to reference H. Yamane, Y. Mikawa, C. Yokoyama, Pentaamminechlorogallium(III) dichloride. Acta Crystallogr. E 63, i59–i61 (2007) CrossRef H. Yamane, Y. Mikawa, C. Yokoyama, Pentaamminechlorogallium(III) dichloride. Acta Crystallogr. E 63, i59–i61 (2007) CrossRef
116.
go back to reference S. Schimmel, P. Duchstein, T.G. Steigerwald, A.-C.L. Kimmel, E. Schlücker, D. Zahn, R. Niewa, P. Wellmann, In situ X-ray monitoring of transport and chemistry of Ga-containing intermediates under ammonothermal growth conditions of GaN. J. Cryst. Growth 498, 214–223 (2018) CrossRef S. Schimmel, P. Duchstein, T.G. Steigerwald, A.-C.L. Kimmel, E. Schlücker, D. Zahn, R. Niewa, P. Wellmann, In situ X-ray monitoring of transport and chemistry of Ga-containing intermediates under ammonothermal growth conditions of GaN. J. Cryst. Growth 498, 214–223 (2018) CrossRef
117.
go back to reference J.W. Trainor, K. Rose, Some properties of InN films prepared by reactive evaporation. J. Electron. Mater. 3, 821–828 (1974) CrossRef J.W. Trainor, K. Rose, Some properties of InN films prepared by reactive evaporation. J. Electron. Mater. 3, 821–828 (1974) CrossRef
118.
go back to reference M.R. Ranade, F. Tessier, A. Navrotsky, R. Marchand, Calorimetric determination of the enthalpy of formation of InN and comparison with AlN and GaN. J. Mater. Res. 16, 2824–2831 (2001) CrossRef M.R. Ranade, F. Tessier, A. Navrotsky, R. Marchand, Calorimetric determination of the enthalpy of formation of InN and comparison with AlN and GaN. J. Mater. Res. 16, 2824–2831 (2001) CrossRef
119.
go back to reference T.A. Komissarova, V.N. Jmerik, S.V. Ivanov, O. Drachenko, X. Wang, A. Yoshikawa, Calorimetric determination of the enthalpy of formation of InN and comparison with AlN and GaN. Phys. Rev. B 84, 035205 (2011) CrossRef T.A. Komissarova, V.N. Jmerik, S.V. Ivanov, O. Drachenko, X. Wang, A. Yoshikawa, Calorimetric determination of the enthalpy of formation of InN and comparison with AlN and GaN. Phys. Rev. B 84, 035205 (2011) CrossRef
120.
go back to reference X.M. Duan, C. Stampfl, Nitrogen vacancies in InN: Vacancy clustering and metallic bonding from first principles. Phys. Rev. B 77, 115207 (2008) CrossRef X.M. Duan, C. Stampfl, Nitrogen vacancies in InN: Vacancy clustering and metallic bonding from first principles. Phys. Rev. B 77, 115207 (2008) CrossRef
121.
go back to reference D.R. Ketchum, G.L. Schimek, W.T. Pennington, J.W. Kolis, Synthesis of new Group III fluoride–ammonia adducts in supercritical ammonia: structures of AlF 3(NH 2) 2 and InF 2(NH 2)(NH 3). Inorg. Chim. Acta 294, 200–206 (1999) CrossRef D.R. Ketchum, G.L. Schimek, W.T. Pennington, J.W. Kolis, Synthesis of new Group III fluoride–ammonia adducts in supercritical ammonia: structures of AlF 3(NH 2) 2 and InF 2(NH 2)(NH 3). Inorg. Chim. Acta 294, 200–206 (1999) CrossRef
122.
go back to reference S. Bremm, G. Meyer, Triamminetrichloroindium(III), [InCl 3(NH 3) 3]. Acta Crystallogr. E 59, i110–i111 (2003) CrossRef S. Bremm, G. Meyer, Triamminetrichloroindium(III), [InCl 3(NH 3) 3]. Acta Crystallogr. E 59, i110–i111 (2003) CrossRef
123.
go back to reference A.P. Purdy, Indium(III) amides and nitrides. Inorg. Chem. 33, 282–286 (1994) CrossRef A.P. Purdy, Indium(III) amides and nitrides. Inorg. Chem. 33, 282–286 (1994) CrossRef
124.
go back to reference T. Suda, K. Kakishita, Band-gap energy and electron effective mass of polycrystalline Zn 3N 2. J. Appl. Phys. 99, 076101 (2006) CrossRef T. Suda, K. Kakishita, Band-gap energy and electron effective mass of polycrystalline Zn 3N 2. J. Appl. Phys. 99, 076101 (2006) CrossRef
125.
go back to reference S.-H. Yoo, A. Walsh, D.O. Scanlon, A. Soon, Electronic structure and band alignment of zinc nitride, Zn 3N 2. RSC Adv. 4, 3306–3311 (2014) CrossRef S.-H. Yoo, A. Walsh, D.O. Scanlon, A. Soon, Electronic structure and band alignment of zinc nitride, Zn 3N 2. RSC Adv. 4, 3306–3311 (2014) CrossRef
126.
go back to reference M. Futsuhara, K. Yoshioka, O. Takai, Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering. Thin Solid Films 322, 274–281 (1998) CrossRef M. Futsuhara, K. Yoshioka, O. Takai, Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering. Thin Solid Films 322, 274–281 (1998) CrossRef
127.
go back to reference G. Paniconi, Z. Stoeva, R.I. Smith, P.C. Dippo, B.L. Gallagher, D.H. Gregory, Synthesis, stoichiometry and thermal stability of Zn 3N 2 powders prepared by ammonolysis reactions. J. Solid State Chem. 181, 158–165 (2008) CrossRef G. Paniconi, Z. Stoeva, R.I. Smith, P.C. Dippo, B.L. Gallagher, D.H. Gregory, Synthesis, stoichiometry and thermal stability of Zn 3N 2 powders prepared by ammonolysis reactions. J. Solid State Chem. 181, 158–165 (2008) CrossRef
128.
go back to reference T. Endo, Y. Sato, H. Takizawa, M. Shimada, High-pressure synthesis of new compounds, ZnSiN 2 and ZnGeN 2 with distorted wurtzite structure. Mater. Sci. Lett. 11, 424–426 (1992) CrossRef T. Endo, Y. Sato, H. Takizawa, M. Shimada, High-pressure synthesis of new compounds, ZnSiN 2 and ZnGeN 2 with distorted wurtzite structure. Mater. Sci. Lett. 11, 424–426 (1992) CrossRef
129.
go back to reference S. Chen, P. Narang, H.A. Atwater, L.-W. Wang, Phase stability and defect physics of a ternary ZnSnN 2 semiconductor: first principles insights. Adv. Mater. 26, 311–315 (2014) CrossRef S. Chen, P. Narang, H.A. Atwater, L.-W. Wang, Phase stability and defect physics of a ternary ZnSnN 2 semiconductor: first principles insights. Adv. Mater. 26, 311–315 (2014) CrossRef
130.
go back to reference P.C. Quayle, K. He, J. Shan, K. Kash, Synthesis, lattice structure, and band gap of ZnSnN 2. MRS Commun. 3, 135–138 (2013) CrossRef P.C. Quayle, K. He, J. Shan, K. Kash, Synthesis, lattice structure, and band gap of ZnSnN 2. MRS Commun. 3, 135–138 (2013) CrossRef
131.
go back to reference N. Feldberg, J.D. Aldous, W.M. Linhart, L.J. Phillips, K. Durose, P.A. Stampe, R.J. Kennedy, D.O. Scanlon, G. Vardar, R.L. Field, T.Y. Jen, R.S. Goldman, T.D. Veal, S.M. Durbin, Growth, disorder, and physical properties of ZnSnN 2. Appl. Phys. Lett. 103, 042109 (2013) CrossRef N. Feldberg, J.D. Aldous, W.M. Linhart, L.J. Phillips, K. Durose, P.A. Stampe, R.J. Kennedy, D.O. Scanlon, G. Vardar, R.L. Field, T.Y. Jen, R.S. Goldman, T.D. Veal, S.M. Durbin, Growth, disorder, and physical properties of ZnSnN 2. Appl. Phys. Lett. 103, 042109 (2013) CrossRef
132.
go back to reference F.F. Fitzgerald, Reactions in liquid ammonia (potassium ammonozincate, cuprous nitride and an ammonobasic mercuric bromide). J. Am. Chem. Soc. 29, 656–665 (1907) CrossRef F.F. Fitzgerald, Reactions in liquid ammonia (potassium ammonozincate, cuprous nitride and an ammonobasic mercuric bromide). J. Am. Chem. Soc. 29, 656–665 (1907) CrossRef
133.
go back to reference R. Juza, Concerning the amides of the 1 and 2 groups of the periodic system metal amides I announcement. Z. Anorg. Allg. Chem. 231, 121–135 (1937) CrossRef R. Juza, Concerning the amides of the 1 and 2 groups of the periodic system metal amides I announcement. Z. Anorg. Allg. Chem. 231, 121–135 (1937) CrossRef
134.
go back to reference T.M.M. Richter, N.S.A. Alt, E. Schlücker, R. Niewa, Ammonothermal synthesis and characterization of Li 4[Zn(NH 2) 4](NH 2) 2. Z. Anorg. Allg. Chem. 641, 1016–1023 (2015) CrossRef T.M.M. Richter, N.S.A. Alt, E. Schlücker, R. Niewa, Ammonothermal synthesis and characterization of Li 4[Zn(NH 2) 4](NH 2) 2. Z. Anorg. Allg. Chem. 641, 1016–1023 (2015) CrossRef
135.
go back to reference B. Fröhling, H. Jacobs, Synthesis and crystal structure of a semiammoniate of sodium tetraamidozincate, Na 2[Zn(NH 2) 4]·0.5NH 3. Z. Anorg. Allg. Chem. 624, 1148–1153 (1997) B. Fröhling, H. Jacobs, Synthesis and crystal structure of a semiammoniate of sodium tetraamidozincate, Na 2[Zn(NH 2) 4]·0.5NH 3. Z. Anorg. Allg. Chem. 624, 1148–1153 (1997)
136.
go back to reference G. Lucazeau, L. Guemas, A. Novak, Vibrational spectra and structure of K 2Zn(NH 2) 4 and Rb 2Zn(NH 2) 4 amides. Inorg. Chim. Acta 20, 11–18 (1976) CrossRef G. Lucazeau, L. Guemas, A. Novak, Vibrational spectra and structure of K 2Zn(NH 2) 4 and Rb 2Zn(NH 2) 4 amides. Inorg. Chim. Acta 20, 11–18 (1976) CrossRef
137.
go back to reference L. Brisseau, J. Rouxel, Préparation, caractérisation chimique at structural d’amidozincates alcalins. Rev. Chim. Min. 7, 427–450 (1970) L. Brisseau, J. Rouxel, Préparation, caractérisation chimique at structural d’amidozincates alcalins. Rev. Chim. Min. 7, 427–450 (1970)
138.
go back to reference T.M.M. Richter, N.S.A. Alt, E. Schlücker, R. Niewa, Ammonothermal synthesis and characterization of Cs 2[Zn(NH 2) 4]. Z. Anorg. Allg. Chem. 642, 1207–1211 (2016) CrossRef T.M.M. Richter, N.S.A. Alt, E. Schlücker, R. Niewa, Ammonothermal synthesis and characterization of Cs 2[Zn(NH 2) 4]. Z. Anorg. Allg. Chem. 642, 1207–1211 (2016) CrossRef
139.
go back to reference T.M.M. Richter, Darstellung von Intermediaten in der ammonothermalen Zinknitridsynthese sowie Synthesestrategien für Sc xGa 1–xN (0 ≤ x ≤ 1). Doctoral Dissertation, Universität Stuttgart, 2016 T.M.M. Richter, Darstellung von Intermediaten in der ammonothermalen Zinknitridsynthese sowie Synthesestrategien für Sc xGa 1–xN (0 ≤ x ≤ 1). Doctoral Dissertation, Universität Stuttgart, 2016
140.
go back to reference E. Frankland, On a new series of compounds derived from ammonia and its analogues. Lond. Edinb. Dubl. Phil. Mag. Ser. 4(15), 149–152 (1858) E. Frankland, On a new series of compounds derived from ammonia and its analogues. Lond. Edinb. Dubl. Phil. Mag. Ser. 4(15), 149–152 (1858)
141.
go back to reference R. Juza, A. Neuber, H. Hahn, Zur Kenntnis des Zinknitrides. Metallamide und Metallnitride, IV. Mitteilung. Z. Anorg. Allg. Chem 239, 273–281 (1938) R. Juza, A. Neuber, H. Hahn, Zur Kenntnis des Zinknitrides. Metallamide und Metallnitride, IV. Mitteilung. Z. Anorg. Allg. Chem 239, 273–281 (1938)
142.
go back to reference R. Juza, H. Hahn, Über die Kristallstrukturen von Zn 3N 2, Cd 3N 2 und Ge 3N 4. Metallamide und metallnitride, IX. Mitteilung. Z. Anorg. Allg. Chem. 244, 125–132 (1940) R. Juza, H. Hahn, Über die Kristallstrukturen von Zn 3N 2, Cd 3N 2 und Ge 3N 4. Metallamide und metallnitride, IX. Mitteilung. Z. Anorg. Allg. Chem. 244, 125–132 (1940)
143.
go back to reference R. Juza, F. Hund, Die Kristallstrukturen LiMgN, LiZnN, Li 3AlN 2 und Li 3GaN 2. Naturwissenschaften 33, 121–122 (1946) CrossRef R. Juza, F. Hund, Die Kristallstrukturen LiMgN, LiZnN, Li 3AlN 2 und Li 3GaN 2. Naturwissenschaften 33, 121–122 (1946) CrossRef
144.
go back to reference H. Cao, T.M.M. Richter, C. Pistidda, A.-L. Chaudhary, A. Santoru, G. Gizer, R. Niewa, P. Chen, T. Klassen, M. Dornheim, Alkali metal amidozincates for hydrogen storage. ChemSusChem 8, 3777–3782 (2015) CrossRef H. Cao, T.M.M. Richter, C. Pistidda, A.-L. Chaudhary, A. Santoru, G. Gizer, R. Niewa, P. Chen, T. Klassen, M. Dornheim, Alkali metal amidozincates for hydrogen storage. ChemSusChem 8, 3777–3782 (2015) CrossRef
145.
go back to reference H. Cao, A. Santoru, C. Pistidda, T.M.M. Richter, A.-L. Chaudhary, G. Gizer, R. Niewa, P. Chen, T. Klassen, M. Dornheim, New synthesis route for ternary transition metal amides as well as ultrafast amide-hydride hydrogen storage materials. Chem. Comm. 52, 5100–5103 (2016) CrossRef H. Cao, A. Santoru, C. Pistidda, T.M.M. Richter, A.-L. Chaudhary, G. Gizer, R. Niewa, P. Chen, T. Klassen, M. Dornheim, New synthesis route for ternary transition metal amides as well as ultrafast amide-hydride hydrogen storage materials. Chem. Comm. 52, 5100–5103 (2016) CrossRef
146.
go back to reference H. Cao, C. Pistidda, T.M.M. Richter, A. Santoru, C. Milanese, S. Garroni, J. Bednarcik, A.-L. Chaudhary, G. Gizer, H.-P. Liermann, R. Niewa, P. Chen, T. Klassen, M. Dornheim, In situ X-ray diffraction study of the super-fast re-hydrogenation of K 2[Zn(NH 2) 4]-8LiH. J. Phys. Chem. C 121, 1546–1551 (2017) CrossRef H. Cao, C. Pistidda, T.M.M. Richter, A. Santoru, C. Milanese, S. Garroni, J. Bednarcik, A.-L. Chaudhary, G. Gizer, H.-P. Liermann, R. Niewa, P. Chen, T. Klassen, M. Dornheim, In situ X-ray diffraction study of the super-fast re-hydrogenation of K 2[Zn(NH 2) 4]-8LiH. J. Phys. Chem. C 121, 1546–1551 (2017) CrossRef
147.
go back to reference C. MacGillavry, J. Bijvoet, Die Kristallstruktur von Zn(NH 3) 2Cl 2 und Zn(NH 3) 2Br 2. Z. Kristallogr. 94, 249–255 (1936) CrossRef C. MacGillavry, J. Bijvoet, Die Kristallstruktur von Zn(NH 3) 2Cl 2 und Zn(NH 3) 2Br 2. Z. Kristallogr. 94, 249–255 (1936) CrossRef
148.
go back to reference R. Eßmann, Influence of coordination on N–H···X − hydrogen-bonds. 1. [Zn(NH 3) 4]Br 2 and [Zn(NH 3) 4]I 2. J. Mol. Struct. 356, 201–206 (1995) R. Eßmann, Influence of coordination on N–H···X hydrogen-bonds. 1. [Zn(NH 3) 4]Br 2 and [Zn(NH 3) 4]I 2. J. Mol. Struct. 356, 201–206 (1995)
149.
go back to reference T.M.M. Richter, S. Le Tonquesse, N.S.A. Alt, E. Schlücker, R. Niewa, Trigonal-bipyramidal coordination in first ammoniates of ZnF 2: ZnF 2(NH 3) 3 and ZnF 2(NH 3) 2. Inorg. Chem. 55, 2488–2498 (2016) CrossRef T.M.M. Richter, S. Le Tonquesse, N.S.A. Alt, E. Schlücker, R. Niewa, Trigonal-bipyramidal coordination in first ammoniates of ZnF 2: ZnF 2(NH 3) 3 and ZnF 2(NH 3) 2. Inorg. Chem. 55, 2488–2498 (2016) CrossRef
150.
go back to reference J. Jander, V. Doetsch, G. Jander, Anorganische und allgemeine Chemie in flüssigem Ammoniak (Akademischer Verlag, Berlin, Germany, 1966) J. Jander, V. Doetsch, G. Jander, Anorganische und allgemeine Chemie in flüssigem Ammoniak (Akademischer Verlag, Berlin, Germany, 1966)
151.
go back to reference T.M.M. Richter, S. Strobel, N.S.A. Alt, E. Schlücker, R. Niewa, Ammonothermal synthesis and crystal structures of diamminetriamidodizinc chloride [Zn 2(NH 3) 2(NH 2) 3]Cl and diamminemonoamidozinc bromide [Zn(NH 3) 2(NH 2)]Br. Inorganics 4, 41 (2016) CrossRef T.M.M. Richter, S. Strobel, N.S.A. Alt, E. Schlücker, R. Niewa, Ammonothermal synthesis and crystal structures of diamminetriamidodizinc chloride [Zn 2(NH 3) 2(NH 2) 3]Cl and diamminemonoamidozinc bromide [Zn(NH 3) 2(NH 2)]Br. Inorganics 4, 41 (2016) CrossRef
152.
go back to reference P.W. Schenk, H. Tulhoff, Das System Kaliumamid/Ammoniak. Angew. Chem. 74, 943 (1962) CrossRef P.W. Schenk, H. Tulhoff, Das System Kaliumamid/Ammoniak. Angew. Chem. 74, 943 (1962) CrossRef
153.
go back to reference P.C. Scherer Jr., Solubility of salts in liquid ammonia. J. Am. Chem. Soc. 53, 3694–3697 (1931) CrossRef P.C. Scherer Jr., Solubility of salts in liquid ammonia. J. Am. Chem. Soc. 53, 3694–3697 (1931) CrossRef
Metadata
Title
Intermediates in Ammonothermal Synthesis and Crystal Growth
Author
Rainer Niewa
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-56305-9_13