Skip to main content
Top

07-08-2024 | Correspondence

Internet of Things for Emotion Care: Advances, Applications, and Challenges

Authors: Xu Xu, Chong Fu, David Camacho, Jong Hyuk Park, Junxin Chen

Published in: Cognitive Computation

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Excerpt

Emotion is a cognitive state that occurs in humans with external stimulation [1]. In recent years, psychological-related illnesses and mental health challenges have arisen due to various factors, such as social pressure and interpersonal communication. These issues may threaten social stability and human development. Many studies have determined that emotion care is one of the effective ways to promote psychological well-being and mental health [2]. Traditional approach to emotion care that involves discussing emotions and problems with a mental health professional [1]. It encompasses various techniques, like cognitive behavioral therapy (CBT), which helps individuals identify and change negative thinking patterns and behaviors. However, these methods have relied on subjective self-reporting or limited clinical observations resulting in less reliable for emotional care [3]. In addition, traditional methods might not capture moment-to-moment changes in emotional states, potentially missing critical insights into mental health. Therefore, this highlights the urgency for a more comprehensive, accessible, and objective emotion care approach. …

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Beck AT. Cognitive therapy and the emotional disorders. Penguin; 1979. Beck AT. Cognitive therapy and the emotional disorders. Penguin; 1979.
2.
go back to reference Plageras AP, Psannis KE. IoT-based health and emotion care system. ICT Express. 2023;9(1):112–5.CrossRef Plageras AP, Psannis KE. IoT-based health and emotion care system. ICT Express. 2023;9(1):112–5.CrossRef
3.
go back to reference Tawsif K, Aziz NAA, Raja JE, Hossen J, Jesmeen M. A systematic review on emotion recognition system using physiological signals: data acquisition and methodology. Emerg Sci J. 2022;6(5):1167–98.CrossRef Tawsif K, Aziz NAA, Raja JE, Hossen J, Jesmeen M. A systematic review on emotion recognition system using physiological signals: data acquisition and methodology. Emerg Sci J. 2022;6(5):1167–98.CrossRef
4.
go back to reference Chen J, Sun S, Zhang L-B, Yang B, Wang W. Compressed sensing framework for heart sound acquisition in internet of medical things. IEEE Trans Industr Inf. 2022;18(3):2000–9.CrossRef Chen J, Sun S, Zhang L-B, Yang B, Wang W. Compressed sensing framework for heart sound acquisition in internet of medical things. IEEE Trans Industr Inf. 2022;18(3):2000–9.CrossRef
5.
go back to reference Wang W, Kumar N, Chen J, Gong Z, Kong X, Wei W, Gao H. Realizing the potential of the Internet of Things for smart tourism with 5G and AI. IEEE Netw. 2020;34(6):295–301.CrossRef Wang W, Kumar N, Chen J, Gong Z, Kong X, Wei W, Gao H. Realizing the potential of the Internet of Things for smart tourism with 5G and AI. IEEE Netw. 2020;34(6):295–301.CrossRef
6.
go back to reference Baker S, Xiang W. Artificial Intelligence of Things for smarter healthcare: a survey of advancements, challenges, and opportunities. IEEE Commun Surv Tutor. Baker S, Xiang W. Artificial Intelligence of Things for smarter healthcare: a survey of advancements, challenges, and opportunities. IEEE Commun Surv Tutor.
7.
go back to reference Khudhair SA, Singh MJ. Review in FBMC to enhance the performance of 5G networks. J Commun. 2020;15(5):415–26.CrossRef Khudhair SA, Singh MJ. Review in FBMC to enhance the performance of 5G networks. J Commun. 2020;15(5):415–26.CrossRef
8.
go back to reference Chen J, Guo Z, Xu X, Zhang L-B, Teng Y, Chen Y, Woźniak M, Wang W. A robust deep learning framework based on spectrograms for heart sound classification. IEEE/ACM Trans Comput Biol Bioinform. Chen J, Guo Z, Xu X, Zhang L-B, Teng Y, Chen Y, Woźniak M, Wang W. A robust deep learning framework based on spectrograms for heart sound classification. IEEE/ACM Trans Comput Biol Bioinform.
9.
go back to reference Aruna S, Sindhanaiselvan K, Madhusudhanan B. Computerized grading of brain tumors supplemented by artificial intelligence. Soft Comput. 2020;24(10):7827–33.CrossRef Aruna S, Sindhanaiselvan K, Madhusudhanan B. Computerized grading of brain tumors supplemented by artificial intelligence. Soft Comput. 2020;24(10):7827–33.CrossRef
10.
go back to reference Kaushik H, Kumar T, Bhalla K. iSecurehome: a deep fusion framework for surveillance of smart homes using real-time emotion recognition. Appl Soft Comput. 2022;122:108788.CrossRef Kaushik H, Kumar T, Bhalla K. iSecurehome: a deep fusion framework for surveillance of smart homes using real-time emotion recognition. Appl Soft Comput. 2022;122:108788.CrossRef
11.
go back to reference Rezaee K, Yang X, Khosravi MR, Zhang R, Lin W, Jeon G. Fusion-based learning for stress recognition in smart home: an IOMT framework. Build Environ. 2022;216:108988.CrossRef Rezaee K, Yang X, Khosravi MR, Zhang R, Lin W, Jeon G. Fusion-based learning for stress recognition in smart home: an IOMT framework. Build Environ. 2022;216:108988.CrossRef
12.
go back to reference Chakraborty A, Banerjee JS, Bhadra R, Dutta A, Ganguly S, Das D, Kundu S, Mahmud M, Saha G. A framework of intelligent mental health monitoring in smart cities and societies. IETE J Res. 2023:1–14. Chakraborty A, Banerjee JS, Bhadra R, Dutta A, Ganguly S, Das D, Kundu S, Mahmud M, Saha G. A framework of intelligent mental health monitoring in smart cities and societies. IETE J Res. 2023:1–14.
13.
go back to reference Dzedzickis A, Kaklauskas A, Bucinskas V. Human emotion recognition: Review of sensors and methods. Sensors. 2020;20(3):592. Dzedzickis A, Kaklauskas A, Bucinskas V. Human emotion recognition: Review of sensors and methods. Sensors. 2020;20(3):592.
14.
go back to reference Saganowski S, Perz B, Polak A, Kazienko P. Emotion recognition for everyday life using physiological signals from wearables: a systematic literature review. IEEE Trans Affect Comput. Saganowski S, Perz B, Polak A, Kazienko P. Emotion recognition for everyday life using physiological signals from wearables: a systematic literature review. IEEE Trans Affect Comput.
15.
go back to reference Cîrneanu A-L, Popescu D, Iordache D. New trends in emotion recognition using image analysis by neural networks, a systematic review. Sensors. 2023;23(16):7092.CrossRef Cîrneanu A-L, Popescu D, Iordache D. New trends in emotion recognition using image analysis by neural networks, a systematic review. Sensors. 2023;23(16):7092.CrossRef
16.
go back to reference Hasnul MA, Aziz NAA, Alelyani S, Mohana M, Aziz AA. Electrocardiogram-based emotion recognition systems and their applications in healthcare—a review. Sensors. 2021;21(15):5015.CrossRef Hasnul MA, Aziz NAA, Alelyani S, Mohana M, Aziz AA. Electrocardiogram-based emotion recognition systems and their applications in healthcare—a review. Sensors. 2021;21(15):5015.CrossRef
17.
go back to reference Bharadwaj HK, Agarwal A, Chamola V, Lakkaniga NR, Hassija V, Guizani M, Sikdar B. A review on the role of machine learning in enabling IoT based healthcare applications. IEEE Access. 2021;9:38859–90.CrossRef Bharadwaj HK, Agarwal A, Chamola V, Lakkaniga NR, Hassija V, Guizani M, Sikdar B. A review on the role of machine learning in enabling IoT based healthcare applications. IEEE Access. 2021;9:38859–90.CrossRef
18.
go back to reference Ahad A, Tahir M, Aman Sheikh M, Ahmed KI, Mughees A, Numani A. Technologies trend towards 5G network for smart health-care using IoT: a review. Sensors. 2020;20(14):4047.CrossRef Ahad A, Tahir M, Aman Sheikh M, Ahmed KI, Mughees A, Numani A. Technologies trend towards 5G network for smart health-care using IoT: a review. Sensors. 2020;20(14):4047.CrossRef
19.
go back to reference Soufineyestani M, Dowling D, Khan A. Electroencephalography (EEG) technology applications and available devices. Appl Sci. 2020;10(21):7453.CrossRef Soufineyestani M, Dowling D, Khan A. Electroencephalography (EEG) technology applications and available devices. Appl Sci. 2020;10(21):7453.CrossRef
20.
go back to reference Mutlag AA, Ghani MKA, Mohammed MA. A healthcare resource management optimization framework for ECG biomedical sensors. In: Efficient Data Handling for Massive Internet of Medical Things: Healthcare Data Analytics. Springer; 2021. pp. 229–44. Mutlag AA, Ghani MKA, Mohammed MA. A healthcare resource management optimization framework for ECG biomedical sensors. In: Efficient Data Handling for Massive Internet of Medical Things: Healthcare Data Analytics. Springer; 2021. pp. 229–44.
21.
go back to reference Dobbs WC, Fedewa MV, MacDonald HV, Holmes CJ, Cicone ZS, Plews DJ, Esco MR. The accuracy of acquiring heart rate variability from portable devices: a systematic review and meta-analysis. Sports Med. 2019;49:417–35.CrossRef Dobbs WC, Fedewa MV, MacDonald HV, Holmes CJ, Cicone ZS, Plews DJ, Esco MR. The accuracy of acquiring heart rate variability from portable devices: a systematic review and meta-analysis. Sports Med. 2019;49:417–35.CrossRef
22.
go back to reference Saad W, Rahman N, Karis M, Chia S, Karim S, Talib M, Msja R. Analysis on continuous wearable device for blood glucose detection using GSR sensor. Int J Nanoelectr Mater. 13(8). Saad W, Rahman N, Karis M, Chia S, Karim S, Talib M, Msja R. Analysis on continuous wearable device for blood glucose detection using GSR sensor. Int J Nanoelectr Mater. 13(8).
23.
go back to reference Fuentes del Toro S, Wei Y, Olmeda E, Ren L, Guowu W, Díaz V. Validation of a low-cost electromyography (EMG) system via a commercial and accurate EMG device: pilot study. Sensors. 2019;19(23):5214.CrossRef Fuentes del Toro S, Wei Y, Olmeda E, Ren L, Guowu W, Díaz V. Validation of a low-cost electromyography (EMG) system via a commercial and accurate EMG device: pilot study. Sensors. 2019;19(23):5214.CrossRef
24.
go back to reference Su Y, Ma C, Chen J, Wu H, Luo W, Peng Y, Luo Z, Li L, Tan Y, Omisore OM, et al. Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: a review. Nanoscale Res Lett. 2020;15:1–34.CrossRef Su Y, Ma C, Chen J, Wu H, Luo W, Peng Y, Luo Z, Li L, Tan Y, Omisore OM, et al. Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: a review. Nanoscale Res Lett. 2020;15:1–34.CrossRef
25.
go back to reference Massaroni C, Nicolo A, Sacchetti M, Schena E. Contactless methods for measuring respiratory rate: a review. IEEE Sens J. 2020;21(11):12821–39.CrossRef Massaroni C, Nicolo A, Sacchetti M, Schena E. Contactless methods for measuring respiratory rate: a review. IEEE Sens J. 2020;21(11):12821–39.CrossRef
26.
go back to reference Zheng W-L, Gao K, Li G, Liu W, Liu C, Liu J-Q, Wang G, Lu B-L. Vigilance estimation using a wearable EOG device in real driving environment. IEEE Trans Intell Transp Syst. 2019;21(1):170–84.CrossRef Zheng W-L, Gao K, Li G, Liu W, Liu C, Liu J-Q, Wang G, Lu B-L. Vigilance estimation using a wearable EOG device in real driving environment. IEEE Trans Intell Transp Syst. 2019;21(1):170–84.CrossRef
27.
go back to reference Mustafa MK, Allen T, Appiah K. A comparative review of dynamic neural networks and hidden Markov model methods for mobile on-device speech recognition. Neural Comput Appl. 2019;31:891–9.CrossRef Mustafa MK, Allen T, Appiah K. A comparative review of dynamic neural networks and hidden Markov model methods for mobile on-device speech recognition. Neural Comput Appl. 2019;31:891–9.CrossRef
28.
go back to reference Adjabi I, Ouahabi A, Benzaoui A, Taleb-Ahmed A. Past, present, and future of face recognition: a review. Electronics. 2020;9(8):1188.CrossRef Adjabi I, Ouahabi A, Benzaoui A, Taleb-Ahmed A. Past, present, and future of face recognition: a review. Electronics. 2020;9(8):1188.CrossRef
29.
go back to reference Asish SM, Kulshreshth AK, Borst C. Internal distraction detection utilizing EEG data in an educational VR environment. In: ACM Symposium on Applied Perception 2023. 2023. pp. 1–10. Asish SM, Kulshreshth AK, Borst C. Internal distraction detection utilizing EEG data in an educational VR environment. In: ACM Symposium on Applied Perception 2023. 2023. pp. 1–10.
30.
go back to reference Asish SM, Kulshreshth A, Borst C. Detecting internal distraction in an educational VR environment using EEG data. In: Proceedings of the 2022 ACM Symposium on Spatial User Interaction. 2022. pp. 1–2. Asish SM, Kulshreshth A, Borst C. Detecting internal distraction in an educational VR environment using EEG data. In: Proceedings of the 2022 ACM Symposium on Spatial User Interaction. 2022. pp. 1–2.
31.
go back to reference Schuurmans AA, de Looff P, Nijhof KS, Rosada C, Scholte RH, Popma A, Otten R. Validity of the Empatica E4 wristband to measure heart rate variability (HRV) parameters: a comparison to electrocardiography (ECG). J Med Syst. 2020;44:1–11.CrossRef Schuurmans AA, de Looff P, Nijhof KS, Rosada C, Scholte RH, Popma A, Otten R. Validity of the Empatica E4 wristband to measure heart rate variability (HRV) parameters: a comparison to electrocardiography (ECG). J Med Syst. 2020;44:1–11.CrossRef
32.
go back to reference Yu H, Sano A. Semi-supervised learning for wearable-based momentary stress detection in the wild. Proc ACM Interact Mobile Wearable Ubiquitous Technol. 2023;7(2):1–23.CrossRef Yu H, Sano A. Semi-supervised learning for wearable-based momentary stress detection in the wild. Proc ACM Interact Mobile Wearable Ubiquitous Technol. 2023;7(2):1–23.CrossRef
33.
go back to reference Rashid N, Demirel BU, Odema M, Al Faruque MA. Template matching based early exit CNN for energy-efficient myocardial infarction detection on low-power wearable devices. Proc ACM Interact Mobile Wearable Ubiquitous Technol. 2022;6(2):1–22.CrossRef Rashid N, Demirel BU, Odema M, Al Faruque MA. Template matching based early exit CNN for energy-efficient myocardial infarction detection on low-power wearable devices. Proc ACM Interact Mobile Wearable Ubiquitous Technol. 2022;6(2):1–22.CrossRef
34.
go back to reference Ekman P, Friesen W, Hager J. A technique for the measurement of facial action. Facial Action Coding Syst. 1978:22. Ekman P, Friesen W, Hager J. A technique for the measurement of facial action. Facial Action Coding Syst. 1978:22.
35.
go back to reference Kiprijanovska I, Jakimovski B, Krstevski P, Stankoski S, Mavridou I, Nduka C, Gjoreski H, Gjoreski M. Monitoring valence with facial EMG sensors using machine learning. In: Adjunct Proceedings of the 2022 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the 2022 ACM International Symposium on Wearable Computers. 2022. pp. 178–82. Kiprijanovska I, Jakimovski B, Krstevski P, Stankoski S, Mavridou I, Nduka C, Gjoreski H, Gjoreski M. Monitoring valence with facial EMG sensors using machine learning. In: Adjunct Proceedings of the 2022 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the 2022 ACM International Symposium on Wearable Computers. 2022. pp. 178–82.
36.
go back to reference Al-Ayyad M, Owida HA, De Fazio R, Al-Naami B, Visconti P. Electromyography monitoring systems in rehabilitation: a review of clinical applications, wearable devices and signal acquisition methodologies. Electronics. 2023;12(7):1520.CrossRef Al-Ayyad M, Owida HA, De Fazio R, Al-Naami B, Visconti P. Electromyography monitoring systems in rehabilitation: a review of clinical applications, wearable devices and signal acquisition methodologies. Electronics. 2023;12(7):1520.CrossRef
37.
go back to reference Tian Y, Cao J. Fatigue driving detection based on electrooculography: a review. EURASIP J Image Video Process. 2021;2021(1):1–17. Tian Y, Cao J. Fatigue driving detection based on electrooculography: a review. EURASIP J Image Video Process. 2021;2021(1):1–17.
38.
go back to reference Hatipoglu Yilmaz B, Kose C. A novel signal to image transformation and feature level fusion for multimodal emotion recognition. Biomed Eng/Biomedizinische Technik. 2021;66(4):353–62. Hatipoglu Yilmaz B, Kose C. A novel signal to image transformation and feature level fusion for multimodal emotion recognition. Biomed Eng/Biomedizinische Technik. 2021;66(4):353–62.
39.
go back to reference Akçay MB, Oğuz K. Speech emotion recognition: emotional models, databases, features, preprocessing methods, supporting modalities, and classifiers. Speech Commun. 2020;116:56–76.CrossRef Akçay MB, Oğuz K. Speech emotion recognition: emotional models, databases, features, preprocessing methods, supporting modalities, and classifiers. Speech Commun. 2020;116:56–76.CrossRef
40.
go back to reference Zhu J, Ji L, Liu C. Heart rate variability monitoring for emotion and disorders of emotion. Physiol Meas. 2019;40(6):064004.CrossRef Zhu J, Ji L, Liu C. Heart rate variability monitoring for emotion and disorders of emotion. Physiol Meas. 2019;40(6):064004.CrossRef
41.
go back to reference Berwal D, Vandana C, Dewan S, Jiji C, Baghini MS. Motion artifact removal in ambulatory ECG signal for heart rate variability analysis. IEEE Sens J. 2019;19(24):12432–42.CrossRef Berwal D, Vandana C, Dewan S, Jiji C, Baghini MS. Motion artifact removal in ambulatory ECG signal for heart rate variability analysis. IEEE Sens J. 2019;19(24):12432–42.CrossRef
42.
go back to reference Jeong DU, Lim KM. Combined deep CNN-LSTM network-based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG-PPG features. Sci Rep. 2021;11(1):13539.CrossRef Jeong DU, Lim KM. Combined deep CNN-LSTM network-based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG-PPG features. Sci Rep. 2021;11(1):13539.CrossRef
43.
go back to reference Chan M, Zhu L, Vatanparvar K, Jung H, Kuang J, Gao A. Improving heart rate and heart rate variability estimation from video through a HR-RR-tuned filter. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2023. pp. 1–5. Chan M, Zhu L, Vatanparvar K, Jung H, Kuang J, Gao A. Improving heart rate and heart rate variability estimation from video through a HR-RR-tuned filter. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2023. pp. 1–5.
44.
go back to reference Machado ÁS, Priego-Quesada JI, Jimenez-Perez I, Gil-Calvo M, Carpes FP, Perez-Soriano P. Influence of infrared camera model and evaluator reproducibility in the assessment of skin temperature responses to physical exercise. J Therm Biol. 2021;98:102913.CrossRef Machado ÁS, Priego-Quesada JI, Jimenez-Perez I, Gil-Calvo M, Carpes FP, Perez-Soriano P. Influence of infrared camera model and evaluator reproducibility in the assessment of skin temperature responses to physical exercise. J Therm Biol. 2021;98:102913.CrossRef
45.
go back to reference Sharma P, Hui X, Zhou J, Conroy TB, Kan EC. Wearable radio-frequency sensing of respiratory rate, respiratory volume, and heart rate. NPJ Digit Med. 2020;3(1):98. Sharma P, Hui X, Zhou J, Conroy TB, Kan EC. Wearable radio-frequency sensing of respiratory rate, respiratory volume, and heart rate. NPJ Digit Med. 2020;3(1):98.
46.
go back to reference Dolensek N, Gehrlach DA, Klein AS, Gogolla N. Facial expressions of emotion states and their neuronal correlates in mice. Science. 2020;368(6486):89–94.CrossRef Dolensek N, Gehrlach DA, Klein AS, Gogolla N. Facial expressions of emotion states and their neuronal correlates in mice. Science. 2020;368(6486):89–94.CrossRef
47.
go back to reference Petrariu AI, Lavric A. SigFox wireless communication enhancement for Internet of Things: a study. In: 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE). IEEE. 2021;2021:1–4. Petrariu AI, Lavric A. SigFox wireless communication enhancement for Internet of Things: a study. In: 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE). IEEE. 2021;2021:1–4.
48.
go back to reference Alenezi M, Chai KK, Chen Y, Jimaa S. Ultra-dense Lorawan: reviews and challenges. IET Commun. 2020;14(9):1361–71.CrossRef Alenezi M, Chai KK, Chen Y, Jimaa S. Ultra-dense Lorawan: reviews and challenges. IET Commun. 2020;14(9):1361–71.CrossRef
49.
go back to reference Lee J, Park C, Roh H. Revisiting adaptive frequency hopping map prediction in Bluetooth with machine learning classifiers. Energies. 2021;14(4):928.CrossRef Lee J, Park C, Roh H. Revisiting adaptive frequency hopping map prediction in Bluetooth with machine learning classifiers. Energies. 2021;14(4):928.CrossRef
50.
go back to reference Szott S, Kosek-Szott K, Gawłowicz P, Gómez JT, Bellalta B, Zubow A, Dressler F. Wi-Fi meets ML: a survey on improving IEEE 802.11 performance with machine learning. IEEE Commun Surv Tutor. 2022;24(3):1843–93. Szott S, Kosek-Szott K, Gawłowicz P, Gómez JT, Bellalta B, Zubow A, Dressler F. Wi-Fi meets ML: a survey on improving IEEE 802.11 performance with machine learning. IEEE Commun Surv Tutor. 2022;24(3):1843–93.
51.
go back to reference Hu Z. Layered network protocols for secure communications in the Internet of Things. University of Oregon: Eugene, OR, USA. Hu Z. Layered network protocols for secure communications in the Internet of Things. University of Oregon: Eugene, OR, USA.
52.
go back to reference Alsabah M, Naser MA, Mahmmod BM, Abdulhussain SH, Eissa MR, Al-Baidhani A, Noordin NK, Sait SM, Al-Utaibi KA, Hashim F. 6G wireless communications networks: a comprehensive survey. IEEE Access. 2021;9:148191–243.CrossRef Alsabah M, Naser MA, Mahmmod BM, Abdulhussain SH, Eissa MR, Al-Baidhani A, Noordin NK, Sait SM, Al-Utaibi KA, Hashim F. 6G wireless communications networks: a comprehensive survey. IEEE Access. 2021;9:148191–243.CrossRef
53.
go back to reference Rastogi E, Saxena N, Roy A, Shin DR. Narrowband Internet of Things: a comprehensive study. Comput Netw. 2020;173:107209.CrossRef Rastogi E, Saxena N, Roy A, Shin DR. Narrowband Internet of Things: a comprehensive study. Comput Netw. 2020;173:107209.CrossRef
54.
go back to reference Tafintsev N, Moltchanov D, Chiumento A, Valkama M, Andreev S. Airborne integrated access and backhaul systems: learning-aided modeling and optimization. IEEE Trans Veh Technol. Tafintsev N, Moltchanov D, Chiumento A, Valkama M, Andreev S. Airborne integrated access and backhaul systems: learning-aided modeling and optimization. IEEE Trans Veh Technol.
55.
go back to reference Guan Y, Geng F, Saleh JH. Review of high throughput satellites: market disruptions, affordability-throughput map, and the cost per bit/second decision tree. IEEE Aerosp Electron Syst Mag. 2019;34(5):64–80.CrossRef Guan Y, Geng F, Saleh JH. Review of high throughput satellites: market disruptions, affordability-throughput map, and the cost per bit/second decision tree. IEEE Aerosp Electron Syst Mag. 2019;34(5):64–80.CrossRef
56.
go back to reference Crisp NH, Roberts PC, Livadiotti S, Oiko VTA, Edmondson S, Haigh S, Huyton C, Sinpetru L, Smith K, Worrall S, et al. The benefits of very low earth orbit for earth observation missions. Prog Aerosp Sci. 2020;117:100619.CrossRef Crisp NH, Roberts PC, Livadiotti S, Oiko VTA, Edmondson S, Haigh S, Huyton C, Sinpetru L, Smith K, Worrall S, et al. The benefits of very low earth orbit for earth observation missions. Prog Aerosp Sci. 2020;117:100619.CrossRef
57.
go back to reference Jouhari M, Saeed N, Alouini M-S, Amhoud EM. A survey on scalable Lorawan for massive IoT: Recent advances, potentials, and challenges. IEEE Commun Surv Tutor. Jouhari M, Saeed N, Alouini M-S, Amhoud EM. A survey on scalable Lorawan for massive IoT: Recent advances, potentials, and challenges. IEEE Commun Surv Tutor.
58.
go back to reference Dimitrievski A, Filiposka S, Melero FJ, Zdravevski E, Lameski P, Pires IM, Garcia NM, Lousado JP, Trajkovik V. Rural healthcare IoT architecture based on low-energy LoRa. Int J Environ Res Public Health. 2021;18(14):7660.CrossRef Dimitrievski A, Filiposka S, Melero FJ, Zdravevski E, Lameski P, Pires IM, Garcia NM, Lousado JP, Trajkovik V. Rural healthcare IoT architecture based on low-energy LoRa. Int J Environ Res Public Health. 2021;18(14):7660.CrossRef
59.
go back to reference Migabo EM, Djouani KD, Kurien AM. The narrowband internet of things (NB-IoT) resources management performance state of art, challenges, and opportunities. IEEE Access. 2020;8:97658–75. Migabo EM, Djouani KD, Kurien AM. The narrowband internet of things (NB-IoT) resources management performance state of art, challenges, and opportunities. IEEE Access. 2020;8:97658–75.
60.
go back to reference Moloudi S, Mozaffari M, Veedu SNK, Kittichokechai K, Wang Y-PE, Bergman J, Höglund A. Coverage evaluation for 5G reduced capability new radio (NR-redcap). IEEE Access. 2021;9:45055–67. Moloudi S, Mozaffari M, Veedu SNK, Kittichokechai K, Wang Y-PE, Bergman J, Höglund A. Coverage evaluation for 5G reduced capability new radio (NR-redcap). IEEE Access. 2021;9:45055–67.
61.
go back to reference Jia M, Zhang X, Sun J, Gu X, Guo Q. Intelligent resource management for satellite and terrestrial spectrum shared networking toward b5g. IEEE Wirel Commun. 2020;27(1):54–61.CrossRef Jia M, Zhang X, Sun J, Gu X, Guo Q. Intelligent resource management for satellite and terrestrial spectrum shared networking toward b5g. IEEE Wirel Commun. 2020;27(1):54–61.CrossRef
62.
go back to reference Garg RK, Bhola J, Soni SK. Healthcare monitoring of mountaineers by low power wireless sensor networks. Inform Med Unlocked. 2021;27:100775.CrossRef Garg RK, Bhola J, Soni SK. Healthcare monitoring of mountaineers by low power wireless sensor networks. Inform Med Unlocked. 2021;27:100775.CrossRef
63.
go back to reference Liu Z, Tan Y, Li H, Jiang H, Liu J, Liao H. A 0.5-v 3.69-nw complementary source-follower-c based low-pass filter for wearable biomedical applications. IEEE Trans Circ Syst I: Regular Papers. 2020;67(12):4370–81. Liu Z, Tan Y, Li H, Jiang H, Liu J, Liao H. A 0.5-v 3.69-nw complementary source-follower-c based low-pass filter for wearable biomedical applications. IEEE Trans Circ Syst I: Regular Papers. 2020;67(12):4370–81.
64.
go back to reference Barbosh M, Singh P, Sadhu A. Empirical mode decomposition and its variants: A review with applications in structural health monitoring. Smart Mater Struct. 2020;29(9):093001.CrossRef Barbosh M, Singh P, Sadhu A. Empirical mode decomposition and its variants: A review with applications in structural health monitoring. Smart Mater Struct. 2020;29(9):093001.CrossRef
65.
go back to reference Zhang D, Zhang D. Wavelet transform, fundamentals of image data mining: Analysis, features, classification and retrieval. 2019. pp. 35–44. Zhang D, Zhang D. Wavelet transform, fundamentals of image data mining: Analysis, features, classification and retrieval. 2019. pp. 35–44.
66.
go back to reference Agarwal S, Zubair M. Classification of alcoholic and non-alcoholic EEG signals based on sliding-SSA and independent component analysis. IEEE Sens J. 2021;21(23):26198–206.CrossRef Agarwal S, Zubair M. Classification of alcoholic and non-alcoholic EEG signals based on sliding-SSA and independent component analysis. IEEE Sens J. 2021;21(23):26198–206.CrossRef
67.
go back to reference Goumopoulos C, Potha N. Mental fatigue detection using a wearable commodity device and machine learning. J Ambient Intell Humaniz Comput. 2023;14(8):10103–21.CrossRef Goumopoulos C, Potha N. Mental fatigue detection using a wearable commodity device and machine learning. J Ambient Intell Humaniz Comput. 2023;14(8):10103–21.CrossRef
68.
go back to reference Wani TM, Gunawan TS, Qadri SAA, Kartiwi M, Ambikairajah E. A comprehensive review of speech emotion recognition systems. IEEE Access. 2021;9:47795–814.CrossRef Wani TM, Gunawan TS, Qadri SAA, Kartiwi M, Ambikairajah E. A comprehensive review of speech emotion recognition systems. IEEE Access. 2021;9:47795–814.CrossRef
69.
go back to reference Gaikwad P, Paithane A. Novel approach for stress recognition using EEG signal by SVM classifier. In: 2017 International Conference on Computing Methodologies and Communication (ICCMC). IEEE; 2017. pp. 967–71. Gaikwad P, Paithane A. Novel approach for stress recognition using EEG signal by SVM classifier. In: 2017 International Conference on Computing Methodologies and Communication (ICCMC). IEEE; 2017. pp. 967–71.
70.
go back to reference Kaur J, Kumar A. Speech emotion recognition using CNN, k-NN, MLP and random forest. In: Computer Networks and Inventive Communication Technologies: Proceedings of Third ICCNCT 2020. Springer; 2021. pp. 499–509. Kaur J, Kumar A. Speech emotion recognition using CNN, k-NN, MLP and random forest. In: Computer Networks and Inventive Communication Technologies: Proceedings of Third ICCNCT 2020. Springer; 2021. pp. 499–509.
71.
go back to reference Samadiani N, Huang G, Luo W, Shu Y, Wang R, Kocaturk T. A novel video emotion recognition system in the wild using a random forest classifier. In: Data Science: 6th International Conference, ICDS 2019, Ningbo, China, May 15–20, 2019, Revised Selected Papers 6. Springer; 2020. pp. 275–84. Samadiani N, Huang G, Luo W, Shu Y, Wang R, Kocaturk T. A novel video emotion recognition system in the wild using a random forest classifier. In: Data Science: 6th International Conference, ICDS 2019, Ningbo, China, May 15–20, 2019, Revised Selected Papers 6. Springer; 2020. pp. 275–84.
72.
go back to reference Cacheda F, Fernandez D, Novoa FJ, Carneiro V. Early detection of depression: Social network analysis and random forest techniques. J Med Internet Res. 2019;21(6):e12554.CrossRef Cacheda F, Fernandez D, Novoa FJ, Carneiro V. Early detection of depression: Social network analysis and random forest techniques. J Med Internet Res. 2019;21(6):e12554.CrossRef
73.
go back to reference Nandi A, Xhafa F. A federated learning method for real-time emotion state classification from multi-modal streaming. Methods. 2022;204:340–7.CrossRef Nandi A, Xhafa F. A federated learning method for real-time emotion state classification from multi-modal streaming. Methods. 2022;204:340–7.CrossRef
74.
go back to reference Fan J, Wang X, Guo Y, Hu X, Hu B. Federated learning driven secure internet of medical things. IEEE Wirel Commun. 2022;29(2):68–75.CrossRef Fan J, Wang X, Guo Y, Hu X, Hu B. Federated learning driven secure internet of medical things. IEEE Wirel Commun. 2022;29(2):68–75.CrossRef
75.
go back to reference Xu X, Li C, Fan X, Lan X, Lu X, Ye X, Wu T. Attention mask r-CNN with edge refinement algorithm for identifying circulating genetically abnormal cells. Cytometry A. 2023;103(3):227–39.CrossRef Xu X, Li C, Fan X, Lan X, Lu X, Ye X, Wu T. Attention mask r-CNN with edge refinement algorithm for identifying circulating genetically abnormal cells. Cytometry A. 2023;103(3):227–39.CrossRef
76.
go back to reference Fang B, Chen J, Liu Y, Wang W, Wang K, Singh AK, Lv Z. Dual-Channel neural network for atrial fibrillation detection from a single lead ECG wave. IEEE J Biomed Health Inform. 2023;27(5):2296–305.CrossRef Fang B, Chen J, Liu Y, Wang W, Wang K, Singh AK, Lv Z. Dual-Channel neural network for atrial fibrillation detection from a single lead ECG wave. IEEE J Biomed Health Inform. 2023;27(5):2296–305.CrossRef
77.
go back to reference Peng Z, Lu Y, Pan S, Liu Y. Efficient speech emotion recognition using multi-scale CNN and attention. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEEl; 2021. pp. 3020–4. Peng Z, Lu Y, Pan S, Liu Y. Efficient speech emotion recognition using multi-scale CNN and attention. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEEl; 2021. pp. 3020–4.
78.
go back to reference Chand HV, Karthikeyan J. CNN based driver drowsiness detection system using emotion analysis. Intell Autom Soft Comput. 31(2). Chand HV, Karthikeyan J. CNN based driver drowsiness detection system using emotion analysis. Intell Autom Soft Comput. 31(2).
79.
go back to reference He L, Chan JC-W, Wang Z. Automatic depression recognition using CNN with attention mechanism from videos. Neurocomputing. 2021;422:165–75.CrossRef He L, Chan JC-W, Wang Z. Automatic depression recognition using CNN with attention mechanism from videos. Neurocomputing. 2021;422:165–75.CrossRef
80.
go back to reference Li Z, Cui Z, Wu S, Zhang X, Wang L. Fi-gnn: Modeling feature interactions via graph neural networks for ctr prediction. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019. pp. 539–48. Li Z, Cui Z, Wu S, Zhang X, Wang L. Fi-gnn: Modeling feature interactions via graph neural networks for ctr prediction. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019. pp. 539–48.
81.
go back to reference Xu X, Ruan Z, Yang L. Facial expression recognition based on graph neural network. In: 2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC). IEEE; 2020. pp. 211–4. Xu X, Ruan Z, Yang L. Facial expression recognition based on graph neural network. In: 2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC). IEEE; 2020. pp. 211–4.
82.
go back to reference Gong P, Wang P, Zhou Y, Zhang D. A spiking neural network with adaptive graph convolution and LSTM for EEG-based brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng. 2023;31:1440–50.CrossRef Gong P, Wang P, Zhou Y, Zhang D. A spiking neural network with adaptive graph convolution and LSTM for EEG-based brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng. 2023;31:1440–50.CrossRef
83.
go back to reference Wang J, Xue M, Culhane R, Diao E, Ding J, Tarokh V. Speech emotion recognition with dual-sequence LSTM architecture. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2020. pp. 6474–8. Wang J, Xue M, Culhane R, Diao E, Ding J, Tarokh V. Speech emotion recognition with dual-sequence LSTM architecture. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2020. pp. 6474–8.
84.
go back to reference Mahto D, Yadav SC. Emotion prediction for textual data using glove based HeBi-CuDNNLSTM model. Multimed Tools Appl. 2023:1–26. Mahto D, Yadav SC. Emotion prediction for textual data using glove based HeBi-CuDNNLSTM model. Multimed Tools Appl. 2023:1–26.
85.
go back to reference Rahul J, Sharma LD. Artificial intelligence-based approach for atrial fibrillation detection using normalised and short-duration time-frequency ECG. Biomed Signal Process Control. 2022;71:103270.CrossRef Rahul J, Sharma LD. Artificial intelligence-based approach for atrial fibrillation detection using normalised and short-duration time-frequency ECG. Biomed Signal Process Control. 2022;71:103270.CrossRef
86.
go back to reference Agrawal Y, Shanker RGR, Alluri V. Transformer-based approach towards music emotion recognition from lyrics. In: European Conference on Information Retrieval. Springer; 2021. pp. 167–75. Agrawal Y, Shanker RGR, Alluri V. Transformer-based approach towards music emotion recognition from lyrics. In: European Conference on Information Retrieval. Springer; 2021. pp. 167–75.
87.
go back to reference Zou S, Huang X, Shen X, Liu H. Improving multimodal fusion with main modal transformer for emotion recognition in conversation. Knowl-Based Syst. 2022;258:109978.CrossRef Zou S, Huang X, Shen X, Liu H. Improving multimodal fusion with main modal transformer for emotion recognition in conversation. Knowl-Based Syst. 2022;258:109978.CrossRef
88.
go back to reference Xu X, Chen J, Li C, Fu C, Yang L, Yan Y, Lyu Z. Robust gaze point estimation for metaverse with common mode features suppression network. IEEE Trans Consum Electron. 2024;70(1):2090–8.CrossRef Xu X, Chen J, Li C, Fu C, Yang L, Yan Y, Lyu Z. Robust gaze point estimation for metaverse with common mode features suppression network. IEEE Trans Consum Electron. 2024;70(1):2090–8.CrossRef
89.
go back to reference Xu X, Lv W, Wang W, Zhang Y, Chen J. Empowering semantic segmentation with selective frequency enhancement and attention mechanism for tampering detection. IEEE Trans Artif Intell. Xu X, Lv W, Wang W, Zhang Y, Chen J. Empowering semantic segmentation with selective frequency enhancement and attention mechanism for tampering detection. IEEE Trans Artif Intell.
90.
go back to reference Wang W, Yu X, Fang B, Zhao Y, Chen Y, Wei W, Chen J. Cross-modality LGE-CMR segmentation using image-to-image translation based data augmentation. IEEE/ACM Trans Comput Biol Bioinf. 2023;20(4):2367–75.CrossRef Wang W, Yu X, Fang B, Zhao Y, Chen Y, Wei W, Chen J. Cross-modality LGE-CMR segmentation using image-to-image translation based data augmentation. IEEE/ACM Trans Comput Biol Bioinf. 2023;20(4):2367–75.CrossRef
91.
go back to reference Xu X, Li C, Lan X, Fan X, Lv X, Ye X, Wu T. A lightweight and robust framework for circulating genetically abnormal cells (CACs) identification using 4-color fluorescence in situ hybridization (FISH) image and deep refined learning. J Digit Imag. 2023:1–14. Xu X, Li C, Lan X, Fan X, Lv X, Ye X, Wu T. A lightweight and robust framework for circulating genetically abnormal cells (CACs) identification using 4-color fluorescence in situ hybridization (FISH) image and deep refined learning. J Digit Imag. 2023:1–14.
92.
go back to reference Zhang T, Liu M, Yuan T, Al-Nabhan N. Emotion-aware and intelligent internet of medical things toward emotion recognition during Covid-19 pandemic. IEEE Internet Things J. 2020;8(21):16002–13. Zhang T, Liu M, Yuan T, Al-Nabhan N. Emotion-aware and intelligent internet of medical things toward emotion recognition during Covid-19 pandemic. IEEE Internet Things J. 2020;8(21):16002–13.
93.
go back to reference Kasap B, Vali K, Qian W, Saffarpour M, Ghiasi S. Kubai: Sensor fusion for non-invasive fetal heart rate tracking. IEEE Trans Biomed Eng. Kasap B, Vali K, Qian W, Saffarpour M, Ghiasi S. Kubai: Sensor fusion for non-invasive fetal heart rate tracking. IEEE Trans Biomed Eng.
94.
go back to reference Cai H, Qu Z, Li Z, Zhang Y, Hu X, Hu B. Feature-level fusion approaches based on multimodal EEG data for depression recognition. Inform Fusion. 2020;59:127–38.CrossRef Cai H, Qu Z, Li Z, Zhang Y, Hu X, Hu B. Feature-level fusion approaches based on multimodal EEG data for depression recognition. Inform Fusion. 2020;59:127–38.CrossRef
95.
go back to reference Chen C, Jafari R, Kehtarnavaz N. A real-time human action recognition system using depth and inertial sensor fusion. IEEE Sens J. 2015;16(3):773–81.CrossRef Chen C, Jafari R, Kehtarnavaz N. A real-time human action recognition system using depth and inertial sensor fusion. IEEE Sens J. 2015;16(3):773–81.CrossRef
96.
go back to reference Azghadi MR, Lammie C, Eshraghian JK, Payvand M, Donati E, Linares-Barranco B, Indiveri G. Hardware implementation of deep network accelerators towards healthcare and biomedical applications. IEEE Trans Biomed Circ Syst. 2020;14(6):1138–59.CrossRef Azghadi MR, Lammie C, Eshraghian JK, Payvand M, Donati E, Linares-Barranco B, Indiveri G. Hardware implementation of deep network accelerators towards healthcare and biomedical applications. IEEE Trans Biomed Circ Syst. 2020;14(6):1138–59.CrossRef
97.
go back to reference Chandrasekaran ST, Bhanushali SP, Banerjee I, Sanyal A. Toward real-time, at-home patient health monitoring using reservoir computing CMOS IC. IEEE J Emerg Select Topics Circ Syst. 2021;11(4):829–39.CrossRef Chandrasekaran ST, Bhanushali SP, Banerjee I, Sanyal A. Toward real-time, at-home patient health monitoring using reservoir computing CMOS IC. IEEE J Emerg Select Topics Circ Syst. 2021;11(4):829–39.CrossRef
98.
go back to reference Rahman MA, Hossain MS. An internet-of-medical-things-enabled edge computing framework for tackling covid-19. IEEE Internet Things J. 2021;8(21):15847–54.CrossRef Rahman MA, Hossain MS. An internet-of-medical-things-enabled edge computing framework for tackling covid-19. IEEE Internet Things J. 2021;8(21):15847–54.CrossRef
99.
go back to reference Park S-H, Bae B-C, Cheong Y-G. Emotion recognition from text stories using an emotion embedding model. In: 2020 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE; 2020. pp. 579–83. Park S-H, Bae B-C, Cheong Y-G. Emotion recognition from text stories using an emotion embedding model. In: 2020 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE; 2020. pp. 579–83.
100.
go back to reference Shakya S, Joby P. Heart disease prediction using fog computing based wireless body sensor networks (WSNS). IRO J Sustain Wirel Syst. 2021;3(1):49–58.CrossRef Shakya S, Joby P. Heart disease prediction using fog computing based wireless body sensor networks (WSNS). IRO J Sustain Wirel Syst. 2021;3(1):49–58.CrossRef
101.
go back to reference Qiu Y, Zhang H, Long K. Computation offloading and wireless resource management for healthcare monitoring in fog-computing-based internet of medical things. IEEE Internet Things J. 2021;8(21):15875–83.CrossRef Qiu Y, Zhang H, Long K. Computation offloading and wireless resource management for healthcare monitoring in fog-computing-based internet of medical things. IEEE Internet Things J. 2021;8(21):15875–83.CrossRef
102.
go back to reference Vasconcelos FF, Sarmento RM, Reboucas Filho PP, de Albuquerque VHC. Artificial intelligence techniques empowered edge-cloud architecture for brain CT image analysis. Eng Appl Artif Intell. 2020;91:103585. Vasconcelos FF, Sarmento RM, Reboucas Filho PP, de Albuquerque VHC. Artificial intelligence techniques empowered edge-cloud architecture for brain CT image analysis. Eng Appl Artif Intell. 2020;91:103585.
103.
go back to reference Kim H, Ben-Othman J, Cho S, Mokdad L. A framework for IoT-enabled virtual emotion detection in advanced smart cities. IEEE Network. 2019;33(5):142–8.CrossRef Kim H, Ben-Othman J, Cho S, Mokdad L. A framework for IoT-enabled virtual emotion detection in advanced smart cities. IEEE Network. 2019;33(5):142–8.CrossRef
104.
go back to reference Hossain MS, Muhammad G. Emotion recognition using deep learning approach from audio-visual emotional big data. Inform Fusion. 2019;49:69–78.CrossRef Hossain MS, Muhammad G. Emotion recognition using deep learning approach from audio-visual emotional big data. Inform Fusion. 2019;49:69–78.CrossRef
105.
go back to reference Park J-H, Salim MM, Jo JH, Sicato JCS, Rathore S, Park JH. CIoT-Net: a scalable cognitive IoT based smart city network architecture. HCIS. 2019;9(1):1–20. Park J-H, Salim MM, Jo JH, Sicato JCS, Rathore S, Park JH. CIoT-Net: a scalable cognitive IoT based smart city network architecture. HCIS. 2019;9(1):1–20.
106.
go back to reference Ding N, Ma H, Zhao C, Ma Y, Ge H. Driver’s emotional state-based data anomaly detection for vehicular ad hoc networks. In: 2019 IEEE International Conference on Smart Internet of Things (SmartIoT). IEEE; 2019. pp. 121–6. Ding N, Ma H, Zhao C, Ma Y, Ge H. Driver’s emotional state-based data anomaly detection for vehicular ad hoc networks. In: 2019 IEEE International Conference on Smart Internet of Things (SmartIoT). IEEE; 2019. pp. 121–6.
107.
go back to reference Gyrard A, Sheth A. IAMHAPPY: Towards an IoT knowledge-based cross-domain well-being recommendation system for everyday happiness. Smart Health. 2020;15:100083.CrossRef Gyrard A, Sheth A. IAMHAPPY: Towards an IoT knowledge-based cross-domain well-being recommendation system for everyday happiness. Smart Health. 2020;15:100083.CrossRef
108.
go back to reference Yang J, Wang R, Guan X, Hassan MM, Almogren A, Alsanad A. Ai-enabled emotion-aware robot: The fusion of smart clothing, edge clouds and robotics. Futur Gener Comput Syst. 2020;102:701–9.CrossRef Yang J, Wang R, Guan X, Hassan MM, Almogren A, Alsanad A. Ai-enabled emotion-aware robot: The fusion of smart clothing, edge clouds and robotics. Futur Gener Comput Syst. 2020;102:701–9.CrossRef
109.
go back to reference Chiu P-S, Chang J-W, Lee M-C, Chen C-H, Lee D-S. Enabling intelligent environment by the design of emotionally aware virtual assistant: a case of smart campus. IEEE Access. 2020;8:62032–41. Chiu P-S, Chang J-W, Lee M-C, Chen C-H, Lee D-S. Enabling intelligent environment by the design of emotionally aware virtual assistant: a case of smart campus. IEEE Access. 2020;8:62032–41.
110.
go back to reference Sallah A, Sundaravadivel P. Tot-mon: A real-time internet of things based affective framework for monitoring infants. In: 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE; 2020. pp. 600–1. Sallah A, Sundaravadivel P. Tot-mon: A real-time internet of things based affective framework for monitoring infants. In: 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE; 2020. pp. 600–1.
111.
go back to reference Li J, Shi D, Tumnark P, Xu H. A system for real-time intervention in negative emotional contagion in a smart classroom deployed under edge computing service infrastructure. Peer-to-Peer Netw Appl. 2020;13:1706–19.CrossRef Li J, Shi D, Tumnark P, Xu H. A system for real-time intervention in negative emotional contagion in a smart classroom deployed under edge computing service infrastructure. Peer-to-Peer Netw Appl. 2020;13:1706–19.CrossRef
112.
go back to reference Yu H, Zhou Z. Optimization of IoT-based artificial intelligence assisted telemedicine health analysis system. IEEE Access. 2021;9:85034–48.CrossRef Yu H, Zhou Z. Optimization of IoT-based artificial intelligence assisted telemedicine health analysis system. IEEE Access. 2021;9:85034–48.CrossRef
113.
go back to reference Rathi VK, Rajput NK, Mishra S, Grover BA, Tiwari P, Jaiswal AK, Hossain MS. An edge AI-enabled IoT healthcare monitoring system for smart cities. Comput Electr Eng. 2021;96:107524.CrossRef Rathi VK, Rajput NK, Mishra S, Grover BA, Tiwari P, Jaiswal AK, Hossain MS. An edge AI-enabled IoT healthcare monitoring system for smart cities. Comput Electr Eng. 2021;96:107524.CrossRef
114.
go back to reference Li W, Zeng G, Zhang J, Xu Y, Xing Y, Zhou R, Guo G, Shen Y, Cao D, Wang F-Y. Cogemonet: A cognitive-feature-augmented driver emotion recognition model for smart cockpit. IEEE Trans Comput Social Syst. 2021;9(3):667–78.CrossRef Li W, Zeng G, Zhang J, Xu Y, Xing Y, Zhou R, Guo G, Shen Y, Cao D, Wang F-Y. Cogemonet: A cognitive-feature-augmented driver emotion recognition model for smart cockpit. IEEE Trans Comput Social Syst. 2021;9(3):667–78.CrossRef
115.
go back to reference Tan L, Yu K, Lin L, Cheng X, Srivastava G, Lin JC-W, Wei W. Speech emotion recognition enhanced traffic efficiency solution for autonomous vehicles in a 5G-enabled space-air-ground integrated intelligent transportation system. IEEE Trans Intell Transp Syst. 2021;23(3):2830–42.CrossRef Tan L, Yu K, Lin L, Cheng X, Srivastava G, Lin JC-W, Wei W. Speech emotion recognition enhanced traffic efficiency solution for autonomous vehicles in a 5G-enabled space-air-ground integrated intelligent transportation system. IEEE Trans Intell Transp Syst. 2021;23(3):2830–42.CrossRef
116.
go back to reference Lai YH, Chang YC, Tsai CW, Lin CH, Chen MY. Data fusion analysis for attention-deficit hyperactivity disorder emotion recognition with thermal image and internet of things devices. Softw: Pract Exp. 2021;51(3):595–606. Lai YH, Chang YC, Tsai CW, Lin CH, Chen MY. Data fusion analysis for attention-deficit hyperactivity disorder emotion recognition with thermal image and internet of things devices. Softw: Pract Exp. 2021;51(3):595–606.
117.
go back to reference Elayan H, Aloqaily M, Guizani M. Digital twin for intelligent context-aware IoT healthcare systems. IEEE Internet Things J. 2021;8(23):16749–57.CrossRef Elayan H, Aloqaily M, Guizani M. Digital twin for intelligent context-aware IoT healthcare systems. IEEE Internet Things J. 2021;8(23):16749–57.CrossRef
118.
go back to reference Ferdousi R, Hossain MA, El Saddik A. IoT-enabled model for digital twin of mental stress (DTMS). In: 2021 IEEE Globecom Workshops (GC Wkshps). IEEE; 2021. pp. 1–6. Ferdousi R, Hossain MA, El Saddik A. IoT-enabled model for digital twin of mental stress (DTMS). In: 2021 IEEE Globecom Workshops (GC Wkshps). IEEE; 2021. pp. 1–6.
119.
go back to reference Wu X, Zhang Q. Intelligent aging home control method and system for internet of things emotion recognition. Front Psychol. 2022;13:882699.CrossRef Wu X, Zhang Q. Intelligent aging home control method and system for internet of things emotion recognition. Front Psychol. 2022;13:882699.CrossRef
120.
go back to reference Huang L, Wang N, Yang Z, Guo J. Emotional computing at the edge to support effective IOE applications in future classroom. In: 2022 International Conference on Advanced Learning Technologies (ICALT). IEEE; 2022. pp. 400–2. Huang L, Wang N, Yang Z, Guo J. Emotional computing at the edge to support effective IOE applications in future classroom. In: 2022 International Conference on Advanced Learning Technologies (ICALT). IEEE; 2022. pp. 400–2.
121.
go back to reference Ejaz J, Shah MA. Real-time analysis of student’s behavioural engagement in digital smart classrooms using fog computing and IoT devices. 2022. pp. 49–54. Ejaz J, Shah MA. Real-time analysis of student’s behavioural engagement in digital smart classrooms using fog computing and IoT devices. 2022. pp. 49–54.
122.
go back to reference Chen Z, Feng X, Zhang S. Emotion detection and face recognition of drivers in autonomous vehicles in IoT platform. Image Vis Comput. 2022;128:104569.CrossRef Chen Z, Feng X, Zhang S. Emotion detection and face recognition of drivers in autonomous vehicles in IoT platform. Image Vis Comput. 2022;128:104569.CrossRef
123.
go back to reference Subramanian B, Kim J, Maray M, Paul A. Digital twin model: A real-time emotion recognition system for personalized healthcare. IEEE Access. 2022;10:81155–65.CrossRef Subramanian B, Kim J, Maray M, Paul A. Digital twin model: A real-time emotion recognition system for personalized healthcare. IEEE Access. 2022;10:81155–65.CrossRef
124.
go back to reference Dewalegama M, de Zoysa A, Kodikara L, Dissanayake D, Kuruppu TA, Rupasinghe S, Deep learning-based smart infotainment system for taxi vehicles. In: 2022 International Congress on Human-computer Interaction, Optimization and Robotic Applications (HORA). IEEE; 2022. pp. 1–6. Dewalegama M, de Zoysa A, Kodikara L, Dissanayake D, Kuruppu TA, Rupasinghe S, Deep learning-based smart infotainment system for taxi vehicles. In: 2022 International Congress on Human-computer Interaction, Optimization and Robotic Applications (HORA). IEEE; 2022. pp. 1–6.
125.
go back to reference Dai Z, Zhang Q, Zhao L, Zhu X, Zhou D. Cloud-edge computing technology-based internet of things system for smart classroom environment. Int J Emerg Technol Learn (Online). 2023;18(8):79.CrossRef Dai Z, Zhang Q, Zhao L, Zhu X, Zhou D. Cloud-edge computing technology-based internet of things system for smart classroom environment. Int J Emerg Technol Learn (Online). 2023;18(8):79.CrossRef
126.
go back to reference Olatinwo DD, Abu-Mahfouz A, Hancke G, Myburgh H. IoT-enabled WBAN and machine learning for speech emotion recognition in patients. Sensors. 2023;23(6):2948.CrossRef Olatinwo DD, Abu-Mahfouz A, Hancke G, Myburgh H. IoT-enabled WBAN and machine learning for speech emotion recognition in patients. Sensors. 2023;23(6):2948.CrossRef
127.
go back to reference Amara K, Kerdjidj O, Ramzan N. Emotion recognition for affective human digital twin by means of virtual reality enabling technologies. IEEE Access. Amara K, Kerdjidj O, Ramzan N. Emotion recognition for affective human digital twin by means of virtual reality enabling technologies. IEEE Access.
128.
go back to reference Yassine A, Singh S, Hossain MS, Muhammad G. IoT big data analytics for smart homes with fog and cloud computing. Futur Gener Comput Syst. 2019;91:563–73.CrossRef Yassine A, Singh S, Hossain MS, Muhammad G. IoT big data analytics for smart homes with fog and cloud computing. Futur Gener Comput Syst. 2019;91:563–73.CrossRef
129.
go back to reference Abdulkareem KH, Mohammed MA, Salim A, Arif M, Geman O, Gupta D, Khanna A. Realizing an effective Covid-19 diagnosis system based on machine learning and IoT in smart hospital environment. IEEE Internet Things J. 2021;8(21):15919–28.CrossRef Abdulkareem KH, Mohammed MA, Salim A, Arif M, Geman O, Gupta D, Khanna A. Realizing an effective Covid-19 diagnosis system based on machine learning and IoT in smart hospital environment. IEEE Internet Things J. 2021;8(21):15919–28.CrossRef
130.
go back to reference Saini MK, Goel N. How smart are smart classrooms? A review of smart classroom technologies. ACM Comput Surv. 2019;52(6):1–28. Saini MK, Goel N. How smart are smart classrooms? A review of smart classroom technologies. ACM Comput Surv. 2019;52(6):1–28.
131.
go back to reference Sisinni E, Saifullah A, Han S, Jennehag U, Gidlund M. Industrial internet of things: Challenges, opportunities, and directions. IEEE Trans Industr Inf. 2018;14(11):4724–34.CrossRef Sisinni E, Saifullah A, Han S, Jennehag U, Gidlund M. Industrial internet of things: Challenges, opportunities, and directions. IEEE Trans Industr Inf. 2018;14(11):4724–34.CrossRef
132.
go back to reference Nai R. The design of smart classroom for modern college english teaching under internet of things. PLoS ONE. 2022;17(2):e0264176. Nai R. The design of smart classroom for modern college english teaching under internet of things. PLoS ONE. 2022;17(2):e0264176.
133.
go back to reference Li G, Yang Y, Qu X, Cao D, Li K. A deep learning based image enhancement approach for autonomous driving at night. Knowl-Based Syst. 2021;213:106617.CrossRef Li G, Yang Y, Qu X, Cao D, Li K. A deep learning based image enhancement approach for autonomous driving at night. Knowl-Based Syst. 2021;213:106617.CrossRef
134.
go back to reference Li W, Zhang B, Wang P, Sun C, Zeng G, Tang Q, Guo G, Cao D. Visual-attribute-based emotion regulation of angry driving behaviors. IEEE Intell Transp Syst Mag. 2021;14(3):10–28. Li W, Zhang B, Wang P, Sun C, Zeng G, Tang Q, Guo G, Cao D. Visual-attribute-based emotion regulation of angry driving behaviors. IEEE Intell Transp Syst Mag. 2021;14(3):10–28.
135.
go back to reference Li W, Cui Y, Ma Y, Chen X, Li G, Zeng G, Guo G, Cao D. A spontaneous driver emotion facial expression (DEFE) dataset for intelligent vehicles: Emotions triggered by video-audio clips in driving scenarios. IEEE Trans Affect Comput. Li W, Cui Y, Ma Y, Chen X, Li G, Zeng G, Guo G, Cao D. A spontaneous driver emotion facial expression (DEFE) dataset for intelligent vehicles: Emotions triggered by video-audio clips in driving scenarios. IEEE Trans Affect Comput.
136.
go back to reference McDuff D, Czerwinski M. Designing emotionally sentient agents. Commun ACM. 2018;61(12):74–83.CrossRef McDuff D, Czerwinski M. Designing emotionally sentient agents. Commun ACM. 2018;61(12):74–83.CrossRef
137.
go back to reference Chen J, Wang W, Fang B, Liu Y, Yu K, Leung VCM, Hu X. Digital twin empowered wireless healthcare monitoring for smart home. IEEE J Sel Areas Commun. 2023;41(11):3662–76.CrossRef Chen J, Wang W, Fang B, Liu Y, Yu K, Leung VCM, Hu X. Digital twin empowered wireless healthcare monitoring for smart home. IEEE J Sel Areas Commun. 2023;41(11):3662–76.CrossRef
138.
go back to reference Barricelli BR, Fogli D. Digital twins in human-computer interaction: A systematic review. Int J Human–Comput Interact. 2022:1–19. Barricelli BR, Fogli D. Digital twins in human-computer interaction: A systematic review. Int J Human–Comput Interact. 2022:1–19.
139.
go back to reference Hassan MU, Rehmani MH, Chen J. Differential privacy in blockchain technology: A futuristic approach. J Parallel Distrib Comput. 2020;145:50–74.CrossRef Hassan MU, Rehmani MH, Chen J. Differential privacy in blockchain technology: A futuristic approach. J Parallel Distrib Comput. 2020;145:50–74.CrossRef
140.
go back to reference Rabbi M, Ali S, Choudhury T, Berke E. Passive and in-situ assessment of mental and physical well-being using mobile sensors. In: Proceedings of the 13th International Conference on Ubiquitous Computing. 2011. pp. 385–94. Rabbi M, Ali S, Choudhury T, Berke E. Passive and in-situ assessment of mental and physical well-being using mobile sensors. In: Proceedings of the 13th International Conference on Ubiquitous Computing. 2011. pp. 385–94.
141.
go back to reference Shen S, Zhu T, Wu D, Wang W, Zhou W. From distributed machine learning to federated learning: In the view of data privacy and security. Concurr Comput: Pract Exp. 2022;34(16):e6002.CrossRef Shen S, Zhu T, Wu D, Wang W, Zhou W. From distributed machine learning to federated learning: In the view of data privacy and security. Concurr Comput: Pract Exp. 2022;34(16):e6002.CrossRef
142.
go back to reference Baig MM, Afifi S, GholamHosseini H, Mirza F. A systematic review of wearable sensors and IoT-based monitoring applications for older adults-a focus on ageing population and independent living. J Med Syst. 2019;43:1–11.CrossRef Baig MM, Afifi S, GholamHosseini H, Mirza F. A systematic review of wearable sensors and IoT-based monitoring applications for older adults-a focus on ageing population and independent living. J Med Syst. 2019;43:1–11.CrossRef
143.
go back to reference Kumra S, et al. A survey of acceptability and use of IoT for patient monitoring. In: 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON) (vol. 1). IEEE; 2022. pp. 30–6. Kumra S, et al. A survey of acceptability and use of IoT for patient monitoring. In: 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON) (vol. 1). IEEE; 2022. pp. 30–6.
144.
go back to reference Deng C, Fang X, Han X, Wang X, Yan L, He R, Long Y, Guo Y. IEEE 802.11 be Wi-Fi 7: New challenges and opportunities. IEEE Commun Surv Tutor. 2020;22(4):2136–66. Deng C, Fang X, Han X, Wang X, Yan L, He R, Long Y, Guo Y. IEEE 802.11 be Wi-Fi 7: New challenges and opportunities. IEEE Commun Surv Tutor. 2020;22(4):2136–66.
145.
go back to reference Parween S, Hussain SZ. A review on cross-layer design approach in WSN by different techniques. Adv Sci Technol Eng Syst J. 2020;5(4):741–54.CrossRef Parween S, Hussain SZ. A review on cross-layer design approach in WSN by different techniques. Adv Sci Technol Eng Syst J. 2020;5(4):741–54.CrossRef
Metadata
Title
Internet of Things for Emotion Care: Advances, Applications, and Challenges
Authors
Xu Xu
Chong Fu
David Camacho
Jong Hyuk Park
Junxin Chen
Publication date
07-08-2024
Publisher
Springer US
Published in
Cognitive Computation
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10327-8

Premium Partner