Skip to main content
Top
Published in: Journal of Scientific Computing 2/2019

10-08-2018

Interpolation Error Bounds for Curvilinear Finite Elements and Their Implications on Adaptive Mesh Refinement

Authors: David Moxey, Shankar P. Sastry, Robert M. Kirby

Published in: Journal of Scientific Computing | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mesh generation and adaptive refinement are largely driven by the objective of minimizing the bounds on the interpolation error of the solution of the partial differential equation (PDE) being solved. Thus, the characterization and analysis of interpolation error bounds for curved, high-order finite elements is often desired to efficiently obtain the solution of PDEs when using the finite element method (FEM). Although the order of convergence of the projection error in \(L^2\) is known for both straight-sided and curved elements (Botti in J Sci Comput 52(3):675–703, 2012), an \(L^{\infty }\) estimate as used when studying interpolation errors is not available. Using a Taylor series expansion approach, we derive an interpolation error bound for both straight-sided and curved high-order elements. The availability of this bound facilitates better node placement for minimizing interpolation error compared to the traditional approach of minimizing the Lebesgue constant as a proxy for interpolation error. This is useful for adaptation of the mesh in regions where increased resolution is needed and where the geometric curvature of the elements is high, e.g., boundary layer meshes. Our numerical experiments indicate that the error bounds derived using our technique are asymptotically similar to the actual error, i.e., if our interpolation error bound for an element is larger than it is for other elements, the actual error is also larger than it is for other elements. This type of bound not only provides an indicator for which curved elements to refine but also suggests whether one should use traditional h-refinement or should modify the mapping function used to define elemental curvature. We have validated our bounds through a series of numerical experiments on both straight-sided and curved elements, and we report a summary of these results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Botti, L.: Influence of reference-to-physical frame mappings on approximation properties of discontinuous piecewise polynomial spaces. J. Sci. Comput. 52(3), 675–703 (2012)MathSciNetCrossRefMATH Botti, L.: Influence of reference-to-physical frame mappings on approximation properties of discontinuous piecewise polynomial spaces. J. Sci. Comput. 52(3), 675–703 (2012)MathSciNetCrossRefMATH
2.
go back to reference Bramble, J.H., Hilbert, S.R.: Estimation of linear functionals on sobolev spaces with application to fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7(1), 112–124 (1970)MathSciNetCrossRefMATH Bramble, J.H., Hilbert, S.R.: Estimation of linear functionals on sobolev spaces with application to fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7(1), 112–124 (1970)MathSciNetCrossRefMATH
4.
5.
go back to reference Dekel, S., Levitan, D.: The bramble-hilbert lemma for complex domains. SIAM J. Math. Anal. 35(5), 1103–1112 (2004)CrossRef Dekel, S., Levitan, D.: The bramble-hilbert lemma for complex domains. SIAM J. Math. Anal. 35(5), 1103–1112 (2004)CrossRef
6.
go back to reference Sastry, S.P., Kirby, R.M.: On interpolation errors over quadratic nodal triangular finite elements. In: Sarrate, J., Staten, M. (eds.) Proceedings of the 22nd International Meshing Roundtable, pp. 349–366. Springer, Berlin (2013) Sastry, S.P., Kirby, R.M.: On interpolation errors over quadratic nodal triangular finite elements. In: Sarrate, J., Staten, M. (eds.) Proceedings of the 22nd International Meshing Roundtable, pp. 349–366. Springer, Berlin (2013)
7.
go back to reference Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)MATH Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)MATH
8.
go back to reference Karniadakis, G.E., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn. OUP, Oxford (2005)CrossRefMATH Karniadakis, G.E., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn. OUP, Oxford (2005)CrossRefMATH
9.
go back to reference Hesthaven, J.S.: From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex. SIAM J. Numer. Anal. 35, 655–676 (1998)MathSciNetCrossRefMATH Hesthaven, J.S.: From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex. SIAM J. Numer. Anal. 35, 655–676 (1998)MathSciNetCrossRefMATH
10.
go back to reference Cantwell, C.D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., de Grazia, D., Yakovlev, S., Lombard, J.-E., Ekelschot, D., Jordi, B., Xu, H., Mohamied, Y., Eskilsson, C., Nelson, B., Vos, P., Biotto, C., Kirby, R.M., Sherwin, S.J.: Nektar++: An open-source spectral/hp element framework. Comput. Phys. Commun. 192, 205–219 (2015)CrossRefMATH Cantwell, C.D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., de Grazia, D., Yakovlev, S., Lombard, J.-E., Ekelschot, D., Jordi, B., Xu, H., Mohamied, Y., Eskilsson, C., Nelson, B., Vos, P., Biotto, C., Kirby, R.M., Sherwin, S.J.: Nektar++: An open-source spectral/hp element framework. Comput. Phys. Commun. 192, 205–219 (2015)CrossRefMATH
11.
go back to reference Castro-Diaz, M., Hecht, F., Mohammadi, B., Pironneau, O.: Anisotropic unstructured mesh adaption for flow simulations. Int. J. Numer. Methods Fluids 25(4), 475–491 (1997)MathSciNetCrossRefMATH Castro-Diaz, M., Hecht, F., Mohammadi, B., Pironneau, O.: Anisotropic unstructured mesh adaption for flow simulations. Int. J. Numer. Methods Fluids 25(4), 475–491 (1997)MathSciNetCrossRefMATH
12.
go back to reference Pagnutti, D., Ollivier-Gooch, C.: A generalized framework for high order anisotropic mesh adaptation. In: Fifth MIT Conference on Computational Fluid and Solid Mechanics, Computers and Structures, vol. 87, no. 11, pp. 670–679 (2009) Pagnutti, D., Ollivier-Gooch, C.: A generalized framework for high order anisotropic mesh adaptation. In: Fifth MIT Conference on Computational Fluid and Solid Mechanics, Computers and Structures, vol. 87, no. 11, pp. 670–679 (2009)
13.
go back to reference Kunert, G.: Toward anisotropic mesh construction and error estimation in the finite element method. Numer. Methods Part. Differ. Equ. 18(5), 625–648 (2002)MathSciNetCrossRefMATH Kunert, G.: Toward anisotropic mesh construction and error estimation in the finite element method. Numer. Methods Part. Differ. Equ. 18(5), 625–648 (2002)MathSciNetCrossRefMATH
14.
go back to reference Kamenski, L.: Anisotropic Mesh Adaptation Based on Hessian Recovery and A Posteriori Error Estimates. PhD thesis, Technischen Universität Darmstadt (2009) Kamenski, L.: Anisotropic Mesh Adaptation Based on Hessian Recovery and A Posteriori Error Estimates. PhD thesis, Technischen Universität Darmstadt (2009)
15.
go back to reference Ainsworth, M., Oden, J.: A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Eng. 142(12), 1–88 (1997)MathSciNetCrossRefMATH Ainsworth, M., Oden, J.: A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Eng. 142(12), 1–88 (1997)MathSciNetCrossRefMATH
16.
go back to reference Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. B.G. Teubner, Stuttgart, Leipzig (1999)MATH Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. B.G. Teubner, Stuttgart, Leipzig (1999)MATH
17.
go back to reference Ovall, J.S.: Function, gradient, and hessian recovery using quadratic edgebump functions. SIAM J. Numer. Anal. 45(3), 1064–1080 (2007)MathSciNetCrossRefMATH Ovall, J.S.: Function, gradient, and hessian recovery using quadratic edgebump functions. SIAM J. Numer. Anal. 45(3), 1064–1080 (2007)MathSciNetCrossRefMATH
Metadata
Title
Interpolation Error Bounds for Curvilinear Finite Elements and Their Implications on Adaptive Mesh Refinement
Authors
David Moxey
Shankar P. Sastry
Robert M. Kirby
Publication date
10-08-2018
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2019
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0795-6

Other articles of this Issue 2/2019

Journal of Scientific Computing 2/2019 Go to the issue

Premium Partner