Skip to main content
Top

2022 | OriginalPaper | Chapter

30. Interpretation magnetresonanz-tomographischer (MRT) Daten mit KI

Author : Hans-Heino Ehricke

Published in: Künstliche Intelligenz im Gesundheitswesen

Publisher: Springer Fachmedien Wiesbaden

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Die rasante Entwicklung der Magnetresonanz-Tomografie sowie Fortschritte in der Verfügbarkeit leistungsfähiger Rechentechnik haben in den letzten Jahren neue Perspektiven für die Nutzung radiologischer Bilddaten als Biomarker eröffnet. Dadurch sind bildgestützte Verfahren möglich geworden, die Aussagen über den Krankheitsverlauf und die Wirkung verschiedener Therapieformen erlauben (Radiomics). Ausgehend von klassischen Methoden der Mustererkennung werden die Grundprinzipien und Einsatzmöglichkeiten der KI-basierten Bildinterpretation von MRT-Daten erläutert. Hierzu gehören einfache und fortgeschrittene Klassifikatoren, künstliche neuronale Netze, Convolutional Neural Networks sowie deren Verwendung für Radiomics Anwendungen.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
(MRI[Title/Abstract]) AND ((artificial intelligence[Title/Abstract]) OR (pattern recognition[Title/Abstract]) OR (artificial neural network[Title/Abstract]) OR (machine learning[Title/Abstract]) OR (computer vision[Title/Abstract]))
 
Literature
go back to reference Abdolmaleki, P., Buadu, L. D., & Naderimansh, H. (2001). Feature extraction and classification of breast cancer on dynamic magnetic resonance imaging using artificial neural network. Cancer letters, 171(10), 183–191.CrossRef Abdolmaleki, P., Buadu, L. D., & Naderimansh, H. (2001). Feature extraction and classification of breast cancer on dynamic magnetic resonance imaging using artificial neural network. Cancer letters, 171(10), 183–191.CrossRef
go back to reference Battineni, G., Chintalapudi, N., Amenta, F., & Traini, E. (2020). A Comprehensive machine-learning model applied to Magnetic Resonance Imaging (MRI) to Predict Alzheimer’s Disease (AD) in older subjects. Journal of Clinical Medicine, 9(7), 2146.CrossRef Battineni, G., Chintalapudi, N., Amenta, F., & Traini, E. (2020). A Comprehensive machine-learning model applied to Magnetic Resonance Imaging (MRI) to Predict Alzheimer’s Disease (AD) in older subjects. Journal of Clinical Medicine, 9(7), 2146.CrossRef
go back to reference Bien, N., Rajpurkar, P., Ball, R. L., Irvin, J., Park, A., Jones, E., & Lungren, M. P. (2018). Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. PLoS Medicine, 5(11), 1–19. Bien, N., Rajpurkar, P., Ball, R. L., Irvin, J., Park, A., Jones, E., & Lungren, M. P. (2018). Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. PLoS Medicine, 5(11), 1–19.
go back to reference Billot, B., Bocchetta, M., Todd, E., Dalca, A. V., Rohrer, J. D., & Iglesias, J. E. (2020). Automated segmentation of the hypothalamus and associated subunits in brain MRI. NeuroImage, 23(8), 117287. Billot, B., Bocchetta, M., Todd, E., Dalca, A. V., Rohrer, J. D., & Iglesias, J. E. (2020). Automated segmentation of the hypothalamus and associated subunits in brain MRI. NeuroImage, 23(8), 117287.
go back to reference Boer, R., Vrooman, H. A., Lijn, F., Vernooij, M. W., Ikram, M. A., Lugt, A., & Niessen, W. J. (2009). White matter lesion extension to automatic brain tissue segmentation on MRI. NeuroImage, 45(5), 1151–1161.CrossRef Boer, R., Vrooman, H. A., Lijn, F., Vernooij, M. W., Ikram, M. A., Lugt, A., & Niessen, W. J. (2009). White matter lesion extension to automatic brain tissue segmentation on MRI. NeuroImage, 45(5), 1151–1161.CrossRef
go back to reference Carré, A., Klausner, G., Edjlali, M., Lerousseau, M., Briend-Diop, J., Sun, R., & Robert, C. (2020). Standardization of brain MR images across machines and protocols: Bridging the gap for MRI-based radiomics. Scientific Reports, 10(1), 1–15.CrossRef Carré, A., Klausner, G., Edjlali, M., Lerousseau, M., Briend-Diop, J., Sun, R., & Robert, C. (2020). Standardization of brain MR images across machines and protocols: Bridging the gap for MRI-based radiomics. Scientific Reports, 10(1), 1–15.CrossRef
go back to reference Ehricke, H.-H., & Laub, G. (1990). Gewebecharakterisierung in der dreidimensionalen Kernspintomographie mit Methoden der Texturanalyse. In G. H. Schneider, E. Vogler, & K. Kocever (Hrsg.), 6. Grazer Radiologisches Symposium (S. 502–506). Blackwell. Ehricke, H.-H., & Laub, G. (1990). Gewebecharakterisierung in der dreidimensionalen Kernspintomographie mit Methoden der Texturanalyse. In G. H. Schneider, E. Vogler, & K. Kocever (Hrsg.), 6. Grazer Radiologisches Symposium (S. 502–506). Blackwell.
go back to reference Haralick, R. M. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5), 786–804.CrossRef Haralick, R. M. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5), 786–804.CrossRef
go back to reference Hu, Q., Whitney, H. M., & Giger, M. L. (2020a). A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI. Scientific Reports, 10(1), 1–11.CrossRef Hu, Q., Whitney, H. M., & Giger, M. L. (2020a). A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI. Scientific Reports, 10(1), 1–11.CrossRef
go back to reference Hu, Q., Whitney, H. M., & Giger, M. L. (2020b). Radiomics methodology for breast cancer diagnosis using multiparametric magnetic resonance imaging. Journal of medical imaging, 7(4), 1–15.CrossRef Hu, Q., Whitney, H. M., & Giger, M. L. (2020b). Radiomics methodology for breast cancer diagnosis using multiparametric magnetic resonance imaging. Journal of medical imaging, 7(4), 1–15.CrossRef
go back to reference Lambin, P., Leijenaar, R. T., Deist, T. M., Peerlings, J., De Jong, E. E., & Van Timmeren, J. (2017). Radiomics: The bridge between medical imaging and personalized medicine. Nature reviews Clinical oncology, 14(12), 749–762.CrossRef Lambin, P., Leijenaar, R. T., Deist, T. M., Peerlings, J., De Jong, E. E., & Van Timmeren, J. (2017). Radiomics: The bridge between medical imaging and personalized medicine. Nature reviews Clinical oncology, 14(12), 749–762.CrossRef
go back to reference Lao, Z., Shen, D., Liu, D., Jawad, A. F., Melhem, E. R., Launer, L. J., & Davatzikos, C. (2008). Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine. Academic Radiology, 15(3), 300–313.CrossRef Lao, Z., Shen, D., Liu, D., Jawad, A. F., Melhem, E. R., Launer, L. J., & Davatzikos, C. (2008). Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine. Academic Radiology, 15(3), 300–313.CrossRef
go back to reference Menhardt, W. (1990). MR tissue characterization using iconic fuzzy sets. In H. P. Higer & G. Bielke (Hrsg.), Tissue characterization in MR imaging (S. 145–148). Springer Verlag.CrossRef Menhardt, W. (1990). MR tissue characterization using iconic fuzzy sets. In H. P. Higer & G. Bielke (Hrsg.), Tissue characterization in MR imaging (S. 145–148). Springer Verlag.CrossRef
go back to reference Nagarajan, M. B., Huber, M. B., Schlossbauer, T., Leinsinger, G., Krol, A., & Wismüller, A. (2013). Classification of small lesions in breast MRI: Evaluating the role of dynamically extracted texture features through feature selection. Journal of Medical and Biological Engineering, 33(1), 59–68.CrossRef Nagarajan, M. B., Huber, M. B., Schlossbauer, T., Leinsinger, G., Krol, A., & Wismüller, A. (2013). Classification of small lesions in breast MRI: Evaluating the role of dynamically extracted texture features through feature selection. Journal of Medical and Biological Engineering, 33(1), 59–68.CrossRef
go back to reference Pisapia, J. M., Akbari, H., Rozycki, M., Thawani, J. P., Storm, P. B., & Avery, D. C. (2020). Predicting pediatric optic pathway glioma progression using advanced magnetic resonance image analysis and machine learning. Neuro-Oncology Advances, 2(8), 1–10. Pisapia, J. M., Akbari, H., Rozycki, M., Thawani, J. P., Storm, P. B., & Avery, D. C. (2020). Predicting pediatric optic pathway glioma progression using advanced magnetic resonance image analysis and machine learning. Neuro-Oncology Advances, 2(8), 1–10.
go back to reference Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In N. Navab, J. Hornegger, & A. F. Frangi (Hrsg.), Medical image computing and computer-assisted intervention – MICCAI 2015 (S. 234–241). Springer International Publishing.CrossRef Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In N. Navab, J. Hornegger, & A. F. Frangi (Hrsg.), Medical image computing and computer-assisted intervention – MICCAI 2015 (S. 234–241). Springer International Publishing.CrossRef
go back to reference Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(10), 533–536.CrossRef Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(10), 533–536.CrossRef
go back to reference Sachdeva, J., Kumar, V., Gupta, I., Khandelwal, N., & Ahuja, C. K. (2012). A dual neural network ensemble approach for multiclass brain tumor classification. International journal for numerical methods in biomedical engineering, 28(11), 1107–1120.CrossRef Sachdeva, J., Kumar, V., Gupta, I., Khandelwal, N., & Ahuja, C. K. (2012). A dual neural network ensemble approach for multiclass brain tumor classification. International journal for numerical methods in biomedical engineering, 28(11), 1107–1120.CrossRef
go back to reference Spinks, R., Magnotta, V. A., Andreasen, N. C., Albright, K. C., Ziebell, S., Nopoulos, P., & Cassell, M. (2002). Manual and automated measurement of the whole thalamus and mediodorsal nucleus using magnetic resonance imaging. NeuroImage, 17(2), 631–642.CrossRef Spinks, R., Magnotta, V. A., Andreasen, N. C., Albright, K. C., Ziebell, S., Nopoulos, P., & Cassell, M. (2002). Manual and automated measurement of the whole thalamus and mediodorsal nucleus using magnetic resonance imaging. NeuroImage, 17(2), 631–642.CrossRef
go back to reference Steenwijk, M. D., Pouwels, P. J., Daams, M., Van Dalen, J. W., Caan, M. W., Richard, E., & Vrenken, H. (2013). Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs). NeuroImage: Clinical, 3, 462–469. Steenwijk, M. D., Pouwels, P. J., Daams, M., Van Dalen, J. W., Caan, M. W., Richard, E., & Vrenken, H. (2013). Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs). NeuroImage: Clinical, 3, 462–469.
go back to reference Wen, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-González, J., Routier, A., & Bottani, S. (2020). Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Medical image analysis, 63(7), 101694. Wen, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-González, J., Routier, A., & Bottani, S. (2020). Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Medical image analysis, 63(7), 101694.
go back to reference Zhang, X., Fujita, H., Kanematsu, M., Zhou, X., Hara, T., Kato, H., & Hoshi, H. (2005). Improving the classification of cirrhotic liver by using texture features. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Shanghai, S. 867–870. Zhang, X., Fujita, H., Kanematsu, M., Zhou, X., Hara, T., Kato, H., & Hoshi, H. (2005). Improving the classification of cirrhotic liver by using texture features. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Shanghai, S. 867–870.
go back to reference Zhen, S. H., Cheng, M., Tao, Y. B., Wang, Y. F., Juengpanich, S., Jiang, Z. Y., & Cai, X. J. (2020). Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data. Frontiers in Oncology, 10(5), 1–14. Zhen, S. H., Cheng, M., Tao, Y. B., Wang, Y. F., Juengpanich, S., Jiang, Z. Y., & Cai, X. J. (2020). Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data. Frontiers in Oncology, 10(5), 1–14.
go back to reference Zhou, Z., Li, S., Qin, G., Folkert, M., Jiang, S., & Wang, J. (2019). Multi-objective-based radiomic feature selection for lesion malignancy classification. IEEE Journal of Biomedical and Health Informatics, 24(1), 194–204.CrossRef Zhou, Z., Li, S., Qin, G., Folkert, M., Jiang, S., & Wang, J. (2019). Multi-objective-based radiomic feature selection for lesion malignancy classification. IEEE Journal of Biomedical and Health Informatics, 24(1), 194–204.CrossRef
go back to reference Zhuang, X., Chen, C., Liu, Z., Zhang, L., Zhou, X., Cheng, M., & Wang, K. (2020). Multiparametric MRI-based radiomics analysis for the prediction of breast tumor regression patterns after neoadjuvant chemotherapy. Translational oncology, 13(11), 100831. Zhuang, X., Chen, C., Liu, Z., Zhang, L., Zhou, X., Cheng, M., & Wang, K. (2020). Multiparametric MRI-based radiomics analysis for the prediction of breast tumor regression patterns after neoadjuvant chemotherapy. Translational oncology, 13(11), 100831.
Metadata
Title
Interpretation magnetresonanz-tomographischer (MRT) Daten mit KI
Author
Hans-Heino Ehricke
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-658-33597-7_30