Skip to main content
Top

2021 | OriginalPaper | Chapter

Introducing and Benchmarking a One-Shot Learning Gesture Recognition Dataset

Authors : Panagiotis Kasnesis, Christos Chatzigeorgiou, Charalampos Z. Patrikakis, Maria Rangoussi

Published in: Big Data Technologies and Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Deep learning techniques have been widely and successfully applied, over the last five years, to recognize the gestures and activities performed by users wearing electronic devices. However, the collected datasets are built in an old fashioned way, mostly comprised of subjects that perform many times few different gestures/activities. This paper addresses the lack of a wearable gesture recognition dataset for exploring one-shot learning techniques. The current dataset consists of 46 gestures performed by 35 subjects, wearing a smartwatch equipped with 3 motion sensors and is publicly available. Moreover, 3 one-shot learning classification approaches are benchmarked on the dataset, exploiting two different deep learning classifiers. The results of the benchmark depict the difficulty of the one-shot learning task, exposing new challenges for wearable gesture/activity recognition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Akbari, A., Jafari, R.: Transferring activity recognition models for new wearable sensors with deep generative domain adaptation. In: 2019 18th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pp. 85–96 (2019) Akbari, A., Jafari, R.: Transferring activity recognition models for new wearable sensors with deep generative domain adaptation. In: 2019 18th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pp. 85–96 (2019)
2.
go back to reference Arnault, A., Hanssens, B., Riche, N.: Urban sound classification: striving towards a fair comparison. arXiv abs/2010.11805 (2020) Arnault, A., Hanssens, B., Riche, N.: Urban sound classification: striving towards a fair comparison. arXiv abs/2010.11805 (2020)
3.
go back to reference Brigato, L., Iocchi, L.: A close look at deep learning with small data. arXiv abs/2003.12843 (2020) Brigato, L., Iocchi, L.: A close look at deep learning with small data. arXiv abs/2003.12843 (2020)
4.
go back to reference Chavarriaga, R., et al.: The opportunity challenge: a benchmark database for on-body sensor-based activity recognition. Pattern Recognit. Lett. 34, 2033–2042 (2013)CrossRef Chavarriaga, R., et al.: The opportunity challenge: a benchmark database for on-body sensor-based activity recognition. Pattern Recognit. Lett. 34, 2033–2042 (2013)CrossRef
5.
go back to reference Choi, Y., Hwang, I., Oh, S.: Wearable gesture control of agile micro quadrotors. In: 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 266–271 (2017) Choi, Y., Hwang, I., Oh, S.: Wearable gesture control of agile micro quadrotors. In: 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 266–271 (2017)
6.
go back to reference Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 539–546 (2005) Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 539–546 (2005)
7.
go back to reference Costante, G., Porzi, L., Lanz, O., Valigi, P., Ricci, E.: Personalizing a smartwatch-based gesture interface with transfer learning. In: 2014 22nd European Signal Processing Conference (EUSIPCO), pp. 2530–2534 (2014) Costante, G., Porzi, L., Lanz, O., Valigi, P., Ricci, E.: Personalizing a smartwatch-based gesture interface with transfer learning. In: 2014 22nd European Signal Processing Conference (EUSIPCO), pp. 2530–2534 (2014)
8.
go back to reference Feng, S., Duarte, M.F.: Few-shot learning-based human activity recognition. arXiv abs/1903.10416 (2019) Feng, S., Duarte, M.F.: Few-shot learning-based human activity recognition. arXiv abs/1903.10416 (2019)
9.
go back to reference Garber, L.: Gestural technology: moving interfaces in a new direction. Computer 46, 22–25 (2013)CrossRef Garber, L.: Gestural technology: moving interfaces in a new direction. Computer 46, 22–25 (2013)CrossRef
10.
go back to reference Jacot, A., Gabriel, F., Hongler, C.: Neural tangent kernel: convergence and generalization in neural networks. In: NeurIPS (2018) Jacot, A., Gabriel, F., Hongler, C.: Neural tangent kernel: convergence and generalization in neural networks. In: NeurIPS (2018)
11.
go back to reference Kasnesis, P., Chatzigeorgiou, C., Toumanidis, L., Patrikakis, C.Z.: Gesture-based incident reporting through smart watches. In: 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 249–254 (2019) Kasnesis, P., Chatzigeorgiou, C., Toumanidis, L., Patrikakis, C.Z.: Gesture-based incident reporting through smart watches. In: 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 249–254 (2019)
12.
go back to reference Kasnesis, P., Patrikakis, C.Z., Venieris, I.S.: PerceptionNet: a deep convolutional neural network for late sensor fusion. ArXiv abs/1811.00170 (2018) Kasnesis, P., Patrikakis, C.Z., Venieris, I.S.: PerceptionNet: a deep convolutional neural network for late sensor fusion. ArXiv abs/1811.00170 (2018)
13.
go back to reference Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2015) Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2015)
14.
go back to reference Koch, G.R.: Siamese neural networks for one-shot image recognition (2015) Koch, G.R.: Siamese neural networks for one-shot image recognition (2015)
15.
go back to reference Lake, B.M., Salakhutdinov, R., Gross, J., Tenenbaum, J.: One shot learning of simple visual concepts. Cognit. Sci. 33, 2568–2573 (2011) Lake, B.M., Salakhutdinov, R., Gross, J., Tenenbaum, J.: One shot learning of simple visual concepts. Cognit. Sci. 33, 2568–2573 (2011)
16.
go back to reference Laput, G., Xiao, R., Harrison, C.: Viband: high-fidelity bio-acoustic sensing using commodity smartwatch accelerometers. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology (2016) Laput, G., Xiao, R., Harrison, C.: Viband: high-fidelity bio-acoustic sensing using commodity smartwatch accelerometers. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology (2016)
17.
go back to reference Liu, J., Wang, Z., Zhong, L., Wickramasuriya, J., Vasudevan, V.: uWave: accelerometer-based personalized gesture recognition and its applications. In: PerCom (2009) Liu, J., Wang, Z., Zhong, L., Wickramasuriya, J., Vasudevan, V.: uWave: accelerometer-based personalized gesture recognition and its applications. In: PerCom (2009)
18.
go back to reference Luna, M.M., Carvalho, T.P., Soares, F., Nascimento, H.A.D., Costa, R.M.: Wrist player: a smartwatch gesture controller for smart TVs. In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), vol. 02, pp. 336–341 (2017) Luna, M.M., Carvalho, T.P., Soares, F., Nascimento, H.A.D., Costa, R.M.: Wrist player: a smartwatch gesture controller for smart TVs. In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), vol. 02, pp. 336–341 (2017)
19.
go back to reference Maaten, L.V.D., Hinton, G.E.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)MATH Maaten, L.V.D., Hinton, G.E.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)MATH
20.
go back to reference Morales, F.J.O., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors (Basel, Switzerland) 16, 115 (2016)CrossRef Morales, F.J.O., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors (Basel, Switzerland) 16, 115 (2016)CrossRef
21.
go back to reference Morales, F.J.O., Roggen, D.: Deep convolutional feature transfer across mobile activity recognition domains, sensor modalities and locations. In: ISWC 2016 (2016) Morales, F.J.O., Roggen, D.: Deep convolutional feature transfer across mobile activity recognition domains, sensor modalities and locations. In: ISWC 2016 (2016)
22.
go back to reference Münzner, S., Schmidt, P., Reiss, A., Hanselmann, M., Stiefelhagen, R., Dürichen, R.: CNN-based sensor fusion techniques for multimodal human activity recognition. In: Proceedings of the 2017 ACM International Symposium on Wearable Computers (2017) Münzner, S., Schmidt, P., Reiss, A., Hanselmann, M., Stiefelhagen, R., Dürichen, R.: CNN-based sensor fusion techniques for multimodal human activity recognition. In: Proceedings of the 2017 ACM International Symposium on Wearable Computers (2017)
23.
go back to reference Nascimento, T.H., Soares, F.A.A.M.N., do Nascimento, H.A.D., Vieira, M.A., Carvalho, T.P., de Miranda, W.F.: Netflix control method using smartwatches and continuous gesture recognition. In: 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), pp. 1–4 (2019) Nascimento, T.H., Soares, F.A.A.M.N., do Nascimento, H.A.D., Vieira, M.A., Carvalho, T.P., de Miranda, W.F.: Netflix control method using smartwatches and continuous gesture recognition. In: 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), pp. 1–4 (2019)
24.
go back to reference Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: 2012 16th International Symposium on Wearable Computers, pp. 108–109 (2012) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: 2012 16th International Symposium on Wearable Computers, pp. 108–109 (2012)
25.
go back to reference Ronao, C.A., Cho, S.B.: Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. Appl. 59, 235–244 (2016)CrossRef Ronao, C.A., Cho, S.B.: Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. Appl. 59, 235–244 (2016)CrossRef
26.
go back to reference Villani, V., Sabattini, L., Battilani, N., Fantuzzi, C.: Smartwatch-enhanced interaction with an advanced troubleshooting system for industrial machines (2016) Villani, V., Sabattini, L., Battilani, N., Fantuzzi, C.: Smartwatch-enhanced interaction with an advanced troubleshooting system for industrial machines (2016)
27.
go back to reference Vinyals, O., Blundell, C., Lillicrap, T.P., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: NIPS (2016) Vinyals, O., Blundell, C., Lillicrap, T.P., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: NIPS (2016)
28.
go back to reference Wang, J., Zheng, V., Chen, Y., Huang, M.: Deep transfer learning for cross-domain activity recognition. In: ICCSE 2018 (2018) Wang, J., Zheng, V., Chen, Y., Huang, M.: Deep transfer learning for cross-domain activity recognition. In: ICCSE 2018 (2018)
29.
go back to reference Wang, J., Chen, Y., Hu, L., Peng, X., Yu, P.S.: Stratified transfer learning for cross-domain activity recognition. In: 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 1–10 (2018) Wang, J., Chen, Y., Hu, L., Peng, X., Yu, P.S.: Stratified transfer learning for cross-domain activity recognition. In: 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 1–10 (2018)
30.
go back to reference Wijekoon, A., Wiratunga, N., Sani, S.: Zero-shot learning with matching networks for open-ended human activity recognition. In: SICSA ReaLX (2018) Wijekoon, A., Wiratunga, N., Sani, S.: Zero-shot learning with matching networks for open-ended human activity recognition. In: SICSA ReaLX (2018)
31.
go back to reference Zhu, P., Zhou, H., Cao, S., Yang, P., Xue, S.: Control with gestures: a hand gesture recognition system using off-the-shelf smartwatch. In: 2018 4th International Conference on Big Data Computing and Communications (BIGCOM), pp. 72–77 (2018) Zhu, P., Zhou, H., Cao, S., Yang, P., Xue, S.: Control with gestures: a hand gesture recognition system using off-the-shelf smartwatch. In: 2018 4th International Conference on Big Data Computing and Communications (BIGCOM), pp. 72–77 (2018)
Metadata
Title
Introducing and Benchmarking a One-Shot Learning Gesture Recognition Dataset
Authors
Panagiotis Kasnesis
Christos Chatzigeorgiou
Charalampos Z. Patrikakis
Maria Rangoussi
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-72802-1_8

Premium Partner