Skip to main content
Top
Published in:
Cover of the book

2011 | OriginalPaper | Chapter

1. Introduction and Background Information

Author : Prof. Dr. Kurt Faber

Published in: Biotransformations in Organic Chemistry

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

>Any exponents of classical organic chemistry might probably hesitate to consider a biochemical solution for one of their synthetic problems. This would be due to the fact, that biological systems would have to be handled. Where the growth and maintenance of whole microorganisms is concerned, such hesitation is probably justified. In order to save endless frustrations, close collaboration with a microbiologist or a biochemist is highly recommended to set up and use fermentation systems [1, 2]. On the other hand, isolated enzymes (which may be obtained increasingly easily from commercial sources either in a crude or partially purified form) can be handled like any other chemical catalyst.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The majority of commonly used enzyme preparations are available through chemical suppliers. Nevertheless, for economic reasons, it may be worth contacting an enzyme producer directly, in particular if bulk quantities are required. For a list of enzyme suppliers see the appendix (Chap. 5).
 
2
After all, the exact structure of a Grignard-reagent is still unknown.
 
3
Other sectors of biotechnology have been defined as ‘Red’ (biotechnology in medicine), ‘Green’ (biotechnology for agriculture and plant biotech) and ‘Blue’ (marine biotechnology), http://​www.​EuropaBio.​org, http://​www.​bio.​org
 
4
Only proteases are exceptions to this rule for obvious reasons.
 
5
For exceptional D-chiral proteins see [61].
 
6
According to a BBC-report, the sale of rac-thalidomide to third-world countries has been resumed in mid-1996!
 
7
For a convenient method for controlling the substrate concentration see [85].
 
8
E. coli has ~4,500 genes and Saccharomyces cerevisiae (baker's yeast) ~6,500 genes.
 
9
The amino acid sequence of a protein is generally referred to as its ‘primary structure’, whereas the three-dimensional arrangement of the polyamide chain (the ‘backbone’) in space is called the ‘secondary structure’. The ‘tertiary structure’ includes the arrangement of all atoms, i.e., the amino acid side chains are included, whereas the ‘quarternary structure’ describes the aggregation of several protein molecules to form oligomers.
 
10
Water bound to an enzyme's surface exhibits a (formal) freezing point of about –20°C.
 
11
PDB entry 3icw, courtesy of U. Wagner.
 
12
Also called London forces.
 
13
Also called Coulomb interactions.
 
14
‘To use a picture I want to say that enzyme and glucoside must go together like key and lock in order to exert a chemical effect upon each other’, see [94] p. 2992.
 
15
‘A precise orientation of catalytic groups is required for enzyme action; the substrate may cause an appreciable change in the three-dimensional relationship of the amino acids at the active site, and the changes in protein structure caused by a substrate will bring the catalytic groups into proper orientation for reaction, whereas a non-substrate will not.’ See [96].
 
16
Conformational changes are differentiated into hinge- and shear-type movements [98].
 
17
A ‘record’ of rate acceleration factor of 1014 has been reported. See [100].
 
18
This phenomenon is denoted as ‘electrostatic catalysis’ and was coined as ‘Circe-effect’ by WP Jencks.
 
19
By average, enzymes are 100 times bigger than related chemical catalysts.
 
20
It is important to note that the (modest) pKa of typical amino acid side chains, such as –NH3 + or –CO2– can be substantially altered up to 2–3 pKa-units through neighboring groups within the enzyme environment. As a consequence, the (approximately neutral) imidazole moiety of His can act as strong acid or base, depending on its molecular environment.
 
21
The following rationale was adapted from [111].
 
22
The individual reaction rates v A and v B correspond to v A = (k cat/K M)A · [Enz] · [A] and v B = (k cat/K M)B · [Enz] · [B], respectively, according to Michaelis-Menten kinetics. The ratio of the individual reaction rates of enantiomers is an important parameter for the description of the enantioselectivity of a reaction: v A/v B = E (‘Enantiomeric Ratio’, see Sect. 2.1.1).
 
23
Based on the biotransformation database of Kroutil and Faber (2010) ~14,000 entries.
 
24
For a discussion of the pitfalls associated with TONs and TOFs see [124].
 
25
Assuming that each catalyst molecule has a single active site. For enzymes obeying Michaelis-Menten kinetics the TON is equal to 1/k cat.
 
26
A ‘cofactor’ is tightly bound to an enzyme (e.g., FAD), whereas a ‘coenzyme’ can dissociate into the medium (e.g., NADH). In practice, however, this distinction is not always made in a consequent manner.
 
Literature
1.
go back to reference Goodhue CT (1982) Microb. Transform. Bioact. Compd. 1: 9 Goodhue CT (1982) Microb. Transform. Bioact. Compd. 1: 9
2.
go back to reference Roberts SM, Turner NJ, Willetts AJ, Turner MK (1995) Introduction to Biocatalysis Using Enzymes and Micro-organisms. Cambridge University Press, Cambridge Roberts SM, Turner NJ, Willetts AJ, Turner MK (1995) Introduction to Biocatalysis Using Enzymes and Micro-organisms. Cambridge University Press, Cambridge
3.
go back to reference Baross JA, Deming JW (1983) Nature 303: 423 Baross JA, Deming JW (1983) Nature 303: 423
4.
go back to reference Hough DW, Danson MJ (1999) Curr. Opinion Chem. Biol. 3: 39 Hough DW, Danson MJ (1999) Curr. Opinion Chem. Biol. 3: 39
5.
6.
go back to reference Feyerabend P (1988) Against Method. Verso, London Feyerabend P (1988) Against Method. Verso, London
7.
go back to reference Laane C, Boeren S, Vos K, Veeger C (1987) Biotechnol. Bioeng. 30: 81 Laane C, Boeren S, Vos K, Veeger C (1987) Biotechnol. Bioeng. 30: 81
8.
go back to reference Carrea G, Ottolina G, Riva S (1995) Trends Biotechnol. 13: 63 Carrea G, Ottolina G, Riva S (1995) Trends Biotechnol. 13: 63
9.
go back to reference Bell G, Halling PJ, Moore BD, Partridge J, Rees DG (1995) Trends Biotechnol. 13: 468 Bell G, Halling PJ, Moore BD, Partridge J, Rees DG (1995) Trends Biotechnol. 13: 468
10.
go back to reference Koskinen AMP, Klibanov AM (eds) (1996) Enzymatic Reactions in Organic Media. Blackie Academic & Professional, London Koskinen AMP, Klibanov AM (eds) (1996) Enzymatic Reactions in Organic Media. Blackie Academic & Professional, London
11.
go back to reference Gutman AL, Shapira M (1995) Synthetic Applications of Enzymatic Reactions in Organic Solvents. In: Fiechter A (ed) Adv. Biochem. Eng. Biotechnol., vol. 52, pp 87–128, Springer, Berlin Heidelberg New York Gutman AL, Shapira M (1995) Synthetic Applications of Enzymatic Reactions in Organic Solvents. In: Fiechter A (ed) Adv. Biochem. Eng. Biotechnol., vol. 52, pp 87–128, Springer, Berlin Heidelberg New York
12.
go back to reference Wolfenden R, Snider MJ (2001) Acc. Chem. Res. 34: 938 Wolfenden R, Snider MJ (2001) Acc. Chem. Res. 34: 938
13.
14.
go back to reference Zechel DL, Withers SG (2000) Acc. Chem. Res. 33: 11 Zechel DL, Withers SG (2000) Acc. Chem. Res. 33: 11
15.
go back to reference Garcia-Junceda E (2008) Multi-step Enzyme Catalysis. Wiley-VCH, Weinheim Garcia-Junceda E (2008) Multi-step Enzyme Catalysis. Wiley-VCH, Weinheim
16.
go back to reference Sih CJ, Abushanab E, Jones JB (1977) Ann. Rep. Med. Chem. 12: 298 Sih CJ, Abushanab E, Jones JB (1977) Ann. Rep. Med. Chem. 12: 298
17.
go back to reference Boland W, Frößl C, Lorenz M (1991) Synthesis 1049 Boland W, Frößl C, Lorenz M (1991) Synthesis 1049
18.
go back to reference Schmidt-Kastner G, Egerer P (1984) Amino Acids and Peptides. In: Kieslich K (ed) Biotechnology. Verlag Chemie, Weinheim, vol 6a, pp 387–419 Schmidt-Kastner G, Egerer P (1984) Amino Acids and Peptides. In: Kieslich K (ed) Biotechnology. Verlag Chemie, Weinheim, vol 6a, pp 387–419
19.
go back to reference Gutman AL, Zuobi K, Guibe-Jampel E (1990) Tetrahedron Lett. 31: 2037 Gutman AL, Zuobi K, Guibe-Jampel E (1990) Tetrahedron Lett. 31: 2037
20.
go back to reference Taylor SJC, Sutherland AG, Lee C, Wisdom R, Thomas S, Roberts SM, Evans C (1990) J. Chem. Soc., Chem. Commun. 1120 Taylor SJC, Sutherland AG, Lee C, Wisdom R, Thomas S, Roberts SM, Evans C (1990) J. Chem. Soc., Chem. Commun. 1120
21.
go back to reference Zhang D, Poulter CD (1993) J. Am. Chem. Soc. 115: 1270 Zhang D, Poulter CD (1993) J. Am. Chem. Soc. 115: 1270
22.
go back to reference Yamamoto Y, Yamamoto K, Nishioka T, Oda J (1988) Agric. Biol. Chem. 52: 3087 Yamamoto Y, Yamamoto K, Nishioka T, Oda J (1988) Agric. Biol. Chem. 52: 3087
23.
go back to reference Leak DJ, Aikens PJ, Seyed-Mahmoudian M (1992) Trends Biotechnol. 10: 256 Leak DJ, Aikens PJ, Seyed-Mahmoudian M (1992) Trends Biotechnol. 10: 256
24.
go back to reference Nagasawa T, Yamada H (1989) Trends Biotechnol. 7: 153 Nagasawa T, Yamada H (1989) Trends Biotechnol. 7: 153
25.
go back to reference Mansuy D, Battoni P (1989) Alkane Functionalization by Cytochromes P450 and by Model Systems Using O2 or H2O2. In: Hill CL (ed) Activation and Functionalization of Alkanes. Wiley, New York Mansuy D, Battoni P (1989) Alkane Functionalization by Cytochromes P450 and by Model Systems Using O2 or H2O2. In: Hill CL (ed) Activation and Functionalization of Alkanes. Wiley, New York
26.
go back to reference Lemiere GL, Lepoivre JA, Alderweireldt FC (1985) Tetrahedron Lett. 26: 4527 Lemiere GL, Lepoivre JA, Alderweireldt FC (1985) Tetrahedron Lett. 26: 4527
27.
go back to reference Phillips RS, May SW (1981) Enzyme Microb. Technol. 3: 9 Phillips RS, May SW (1981) Enzyme Microb. Technol. 3: 9
28.
go back to reference May SW (1979) Enzyme Microb. Technol. 1: 15 May SW (1979) Enzyme Microb. Technol. 1: 15
29.
go back to reference Boyd DR, Dorrity MRJ, Hand MV, Malone JF, Sharma ND, Dalton H, Gray DJ, Sheldrake GN (1991) J. Am. Chem. Soc. 113: 667 Boyd DR, Dorrity MRJ, Hand MV, Malone JF, Sharma ND, Dalton H, Gray DJ, Sheldrake GN (1991) J. Am. Chem. Soc. 113: 667
30.
go back to reference Walsh CT, Chen YCJ (1988) Angew. Chem., Int. Ed. 27: 333 Walsh CT, Chen YCJ (1988) Angew. Chem., Int. Ed. 27: 333
32.
go back to reference Koszelewski D, Lavandera I, Clay D, Guebitz G, Rozzell D, Kroutil W (2010) Angew. Chem., Int. Ed. 47: 9337 Koszelewski D, Lavandera I, Clay D, Guebitz G, Rozzell D, Kroutil W (2010) Angew. Chem., Int. Ed. 47: 9337
33.
go back to reference Findeis MH, Whitesides GM (1987) J. Org. Chem. 52: 2838 Findeis MH, Whitesides GM (1987) J. Org. Chem. 52: 2838
34.
go back to reference Akhtar M, Botting NB, Cohen MA, Gani D (1987) Tetrahedron 43: 5899 Akhtar M, Botting NB, Cohen MA, Gani D (1987) Tetrahedron 43: 5899
35.
go back to reference Effenberger F, Ziegler T (1987) Angew. Chem., Int. Ed. 26: 458 Effenberger F, Ziegler T (1987) Angew. Chem., Int. Ed. 26: 458
36.
go back to reference Neidleman SL, Geigert J (1986) Biohalogenation: Principles, Basic Roles and Applications. Ellis Horwood, Chichester Neidleman SL, Geigert J (1986) Biohalogenation: Principles, Basic Roles and Applications. Ellis Horwood, Chichester
37.
go back to reference Stecher H, Twengg M, Ueberbacher BJ, Remler P, Schwab H, Griengl H, Gruber-Khadjawi M (2009) Angew. Chem., Int. Ed. 48: 9546 Stecher H, Twengg M, Ueberbacher BJ, Remler P, Schwab H, Griengl H, Gruber-Khadjawi M (2009) Angew. Chem., Int. Ed. 48: 9546
38.
go back to reference Buist PH, Dimnik GP (1986) Tetrahedron Lett. 27: 1457 Buist PH, Dimnik GP (1986) Tetrahedron Lett. 27: 1457
39.
go back to reference Aresta M, Quaranta E, Liberio R, Dileo C, Tommasi I (1998) Tetrahedron 54: 8841 Aresta M, Quaranta E, Liberio R, Dileo C, Tommasi I (1998) Tetrahedron 54: 8841
40.
go back to reference Ohta H (1999) Adv. Biochem. Eng. Biotechnol. 63: 1 Ohta H (1999) Adv. Biochem. Eng. Biotechnol. 63: 1
41.
go back to reference Schwab JM, Henderson BS (1990) Chem. Rev. 90: 1203 Schwab JM, Henderson BS (1990) Chem. Rev. 90: 1203
42.
go back to reference Fuganti C, Grasselli P (1988) Baker's Yeast Mediated Synthesis of Natural Products. In: Whitaker JR, Sonnet PE (eds) Biocatalysis in Agricultural Biotechnology, ACS Symposium Series, vol 389, pp 359–370 Fuganti C, Grasselli P (1988) Baker's Yeast Mediated Synthesis of Natural Products. In: Whitaker JR, Sonnet PE (eds) Biocatalysis in Agricultural Biotechnology, ACS Symposium Series, vol 389, pp 359–370
43.
go back to reference Toone EJ, Simon ES, Bednarski MD, Whitesides GM (1989) Tetrahedron 45: 5365 Toone EJ, Simon ES, Bednarski MD, Whitesides GM (1989) Tetrahedron 45: 5365
44.
go back to reference Kitazume T, Ikeya T, Murata K (1986) J. Chem. Soc., Chem. Commun. 1331 Kitazume T, Ikeya T, Murata K (1986) J. Chem. Soc., Chem. Commun. 1331
45.
go back to reference Pohl M, Lingen B, Müller M (2002) Chem. Eur. J. 8: 5288 Pohl M, Lingen B, Müller M (2002) Chem. Eur. J. 8: 5288
46.
go back to reference Durchschein K, Ferreira-da Silva B, Wallner S, Macheroux P, Kroutil W, Glueck SM, Faber K (2010) Green Chem. 12: 616 Durchschein K, Ferreira-da Silva B, Wallner S, Macheroux P, Kroutil W, Glueck SM, Faber K (2010) Green Chem. 12: 616
47.
go back to reference Williams RM (2002) Chem. Pharm. Bull. 50: 711 Williams RM (2002) Chem. Pharm. Bull. 50: 711
48.
go back to reference Oikawa H, Katayama K, Suzuki Y, Ichihara A (1995) J. Chem. Soc., Chem. Commun. 1321 Oikawa H, Katayama K, Suzuki Y, Ichihara A (1995) J. Chem. Soc., Chem. Commun. 1321
49.
50.
go back to reference Abe I, Rohmer M, Prestwich GD (1993) Chem. Rev. 93: 2189 Abe I, Rohmer M, Prestwich GD (1993) Chem. Rev. 93: 2189
51.
go back to reference Ganem B (1996) Angew. Chem., Int. Ed. 35: 936 Ganem B (1996) Angew. Chem., Int. Ed. 35: 936
52.
go back to reference Bornscheuer UT, Kazlauskas RJ (2004) Angew. Chem., Int. Ed. 43: 6032 Bornscheuer UT, Kazlauskas RJ (2004) Angew. Chem., Int. Ed. 43: 6032
53.
go back to reference Hult K, Berglund P (2007) Trends Biotechnol. 25: 231 Hult K, Berglund P (2007) Trends Biotechnol. 25: 231
55.
go back to reference Khersonsky O, Roodveldt C, Tawfik DS (2006) Curr. Opinion Chem. Biol. 10: 498 Khersonsky O, Roodveldt C, Tawfik DS (2006) Curr. Opinion Chem. Biol. 10: 498
56.
go back to reference O'Brien PJ, Herschlag D (1999) Chem. Biol. 6: R91 O'Brien PJ, Herschlag D (1999) Chem. Biol. 6: R91
57.
go back to reference Kazlauskas RJ (2005) Curr. Opinion Chem. Biol. 9: 195 Kazlauskas RJ (2005) Curr. Opinion Chem. Biol. 9: 195
58.
go back to reference Penning TM, Jez JM (2001) Chem. Rev. 101: 3027 Penning TM, Jez JM (2001) Chem. Rev. 101: 3027
59.
go back to reference Sweers HM, Wong CH (1986) J. Am. Chem. Soc. 108: 6421 Sweers HM, Wong CH (1986) J. Am. Chem. Soc. 108: 6421
60.
go back to reference Bashir NB, Phythian SJ, Reason AJ, Roberts SM (1995) J. Chem. Soc., Perkin Trans. 1, 2203 Bashir NB, Phythian SJ, Reason AJ, Roberts SM (1995) J. Chem. Soc., Perkin Trans. 1, 2203
61.
go back to reference Jung G (1992) Angew. Chem., Int. Ed. 31: 1457 Jung G (1992) Angew. Chem., Int. Ed. 31: 1457
62.
go back to reference Sih CJ, Wu SH (1989) Topics Stereochem. 19: 63 Sih CJ, Wu SH (1989) Topics Stereochem. 19: 63
63.
go back to reference Fischer E (1898) Zeitschr. physiol. Chem. 26: 60 Fischer E (1898) Zeitschr. physiol. Chem. 26: 60
64.
65.
66.
go back to reference Ariens EJ (1988) Stereospecificity of Bioactive Agents. In: Ariens EJ, van Rensen JJS, Welling W (eds) Stereoselectivity of Pesticides. Elsevier, Amsterdam, pp 39–108 Ariens EJ (1988) Stereospecificity of Bioactive Agents. In: Ariens EJ, van Rensen JJS, Welling W (eds) Stereoselectivity of Pesticides. Elsevier, Amsterdam, pp 39–108
67.
go back to reference Crosby J (1997) Introduction. In: Collins AN, Sheldrake GN, Crosby J (eds) Chirality in Industry II, pp 1–10, Wiley, Chichester Crosby J (1997) Introduction. In: Collins AN, Sheldrake GN, Crosby J (eds) Chirality in Industry II, pp 1–10, Wiley, Chichester
68.
go back to reference Millership JS, Fitzpatrick A (1993) Chirality 5: 573 Millership JS, Fitzpatrick A (1993) Chirality 5: 573
69.
go back to reference Borman S (1992) Chem. Eng. News, June 15: 5 Borman S (1992) Chem. Eng. News, June 15: 5
71.
go back to reference US Food & Drug Administration (2004) Pharmaceutical Current Good Manufacturing Practices (cGMPs) for the 21st Century – a Risk-Based Approach: Final Report US Food & Drug Administration (2004) Pharmaceutical Current Good Manufacturing Practices (cGMPs) for the 21st Century – a Risk-Based Approach: Final Report
72.
go back to reference Farina V, Reeves JT, Senanayake CH, Song JJ (2006) Chem. Rev. 106: 2734 Farina V, Reeves JT, Senanayake CH, Song JJ (2006) Chem. Rev. 106: 2734
73.
go back to reference Agranat H, Caner H, Caldwell J (2002) Nat. Rev. Drug Discov. 1: 753 Agranat H, Caner H, Caldwell J (2002) Nat. Rev. Drug Discov. 1: 753
74.
go back to reference Sheldon RA (1993) Chirotechnology. Marcel Dekker, New York Sheldon RA (1993) Chirotechnology. Marcel Dekker, New York
75.
go back to reference Collins AN, Sheldrake GN, Crosby J (eds) (1992, 1997) Chirality in Industry, 2 vols. Wiley, Chichester Collins AN, Sheldrake GN, Crosby J (eds) (1992, 1997) Chirality in Industry, 2 vols. Wiley, Chichester
76.
go back to reference Morrison JD (ed) (1985) Chiral catalysis. In: Asymmetric Synthesis, vol 5. Academic Press, London Morrison JD (ed) (1985) Chiral catalysis. In: Asymmetric Synthesis, vol 5. Academic Press, London
77.
go back to reference Hanessian S (1983) Total Synthesis of Natural Products: the ‘Chiron’ Approach. Pergamon Press, Oxford Hanessian S (1983) Total Synthesis of Natural Products: the ‘Chiron’ Approach. Pergamon Press, Oxford
78.
go back to reference Scott JW (1984) Readily available chiral carbon fragments and their use in synthesis. In: Morrison JD, Scott JW (eds) Asymmetric Synthesis. Academic Press, New York, vol 4, pp 1-226 Scott JW (1984) Readily available chiral carbon fragments and their use in synthesis. In: Morrison JD, Scott JW (eds) Asymmetric Synthesis. Academic Press, New York, vol 4, pp 1-226
79.
go back to reference Margolin AL (1993) Enzyme Microb. Technol. 15: 266 Margolin AL (1993) Enzyme Microb. Technol. 15: 266
80.
go back to reference Mugford P, Wagner U, Jiang Y, Faber K, Kazlauskas R (2008) Angew. Chem. Int. Ed. 47: 8782 Mugford P, Wagner U, Jiang Y, Faber K, Kazlauskas R (2008) Angew. Chem. Int. Ed. 47: 8782
81.
go back to reference Phillips RS (1996) Trends Biotechnol. 14: 13 Phillips RS (1996) Trends Biotechnol. 14: 13
82.
go back to reference Schuster M, Aaviksaar A, Jakubke HD (1990) Tetrahedron 46: 8093 Schuster M, Aaviksaar A, Jakubke HD (1990) Tetrahedron 46: 8093
83.
84.
85.
go back to reference D'Arrigo P, Fuganti C, Pedrocchi-Fantoni G, Servi S (1998) Tetrahedron 54: 15017 D'Arrigo P, Fuganti C, Pedrocchi-Fantoni G, Servi S (1998) Tetrahedron 54: 15017
86.
87.
go back to reference Cooke R, Kuntz ID (1974) Ann. Rev. Biophys. Bioeng. 3: 95 Cooke R, Kuntz ID (1974) Ann. Rev. Biophys. Bioeng. 3: 95
88.
go back to reference Ahern TJ, Klibanov AM (1985) Science 228: 1280 Ahern TJ, Klibanov AM (1985) Science 228: 1280
89.
go back to reference Adams MWW, Kelly RM (1998) Trends Biotechnol. 16: 329 Adams MWW, Kelly RM (1998) Trends Biotechnol. 16: 329
90.
go back to reference Mozhaev VV, Martinek K (1984) Enzyme Microb. Technol. 6: 50 Mozhaev VV, Martinek K (1984) Enzyme Microb. Technol. 6: 50
91.
go back to reference Jencks WP (1969) Catalysis in Chemistry and Enzymology. McGraw-Hill, New York Jencks WP (1969) Catalysis in Chemistry and Enzymology. McGraw-Hill, New York
92.
go back to reference Fersht A (1985) Enzyme Structure and Mechanism, 2nd edn. Freeman, New York Fersht A (1985) Enzyme Structure and Mechanism, 2nd edn. Freeman, New York
93.
go back to reference Walsh C (ed) (1979) Enzymatic Reaction Mechanism. Freeman, San Francisco Walsh C (ed) (1979) Enzymatic Reaction Mechanism. Freeman, San Francisco
94.
go back to reference Fischer E (1894) Ber. dtsch. chem. Ges. 27: 2985 Fischer E (1894) Ber. dtsch. chem. Ges. 27: 2985
95.
go back to reference Lichtenthaler FW (2003) Angew. Chem., Int. Ed. 33: 2364 Lichtenthaler FW (2003) Angew. Chem., Int. Ed. 33: 2364
96.
go back to reference Koshland DE (1958) Proc. Natl. Acad. Sci. USA 44: 98 Koshland DE (1958) Proc. Natl. Acad. Sci. USA 44: 98
97.
go back to reference Koshland DE, Neet KE (1968) Ann. Rev. Biochem. 37: 359 Koshland DE, Neet KE (1968) Ann. Rev. Biochem. 37: 359
98.
go back to reference Gerstein M, Lesk AM, Chotia C (1994) Biochemistry 33: 6739 Gerstein M, Lesk AM, Chotia C (1994) Biochemistry 33: 6739
100.
101.
go back to reference Warshel A, Aqvist J, Creighton S (1989) Proc. Natl. Acad. Sci. USA 86: 5820 Warshel A, Aqvist J, Creighton S (1989) Proc. Natl. Acad. Sci. USA 86: 5820
102.
103.
go back to reference Ottosson J, Rotticci-Mulder JC, Rotticci D, Hult K (2001) Protein Sci. 10: 1769 Ottosson J, Rotticci-Mulder JC, Rotticci D, Hult K (2001) Protein Sci. 10: 1769
104.
105.
go back to reference Ottosson J, Fransson L, Hult K (2002) Protein Sci. 11: 1462 Ottosson J, Fransson L, Hult K (2002) Protein Sci. 11: 1462
106.
107.
go back to reference Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, Olsson MHM (2006) Chem. Rev. 106: 3210 Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, Olsson MHM (2006) Chem. Rev. 106: 3210
108.
go back to reference Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) Science 303: 186 Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) Science 303: 186
109.
go back to reference Masgrau L, Roujeinikova A, Johanissen LO, Hothi P, Basran J, Ranaghan KE, Mulholland AJ, Sutcliffe MJ, Scrutton NS, Leys D (2006) Science 312: 237 Masgrau L, Roujeinikova A, Johanissen LO, Hothi P, Basran J, Ranaghan KE, Mulholland AJ, Sutcliffe MJ, Scrutton NS, Leys D (2006) Science 312: 237
110.
111.
go back to reference Jones JB (1976) Biochemical Systems in Organic Chemistry: Concepts, Principles and Opportunities. In: Jones JB, Sih CJ, Perlman D (eds) Applications of Biochemical Systems in Organic Chemistry, part I. Wiley, New York, pp 1–46 Jones JB (1976) Biochemical Systems in Organic Chemistry: Concepts, Principles and Opportunities. In: Jones JB, Sih CJ, Perlman D (eds) Applications of Biochemical Systems in Organic Chemistry, part I. Wiley, New York, pp 1–46
112.
go back to reference Cipiciani A, Fringuelli F, Mancini V, Piermatti O, Scappini AM, Ruzziconi R (1997) Tetrahedron 53: 11853 Cipiciani A, Fringuelli F, Mancini V, Piermatti O, Scappini AM, Ruzziconi R (1997) Tetrahedron 53: 11853
113.
go back to reference Kielbasinski P, Goralczyk P, Mikolajczyk M, Wieczorek MW, Majzner WR (1998) Tetrahedron: Asymmetry 9: 2641 Kielbasinski P, Goralczyk P, Mikolajczyk M, Wieczorek MW, Majzner WR (1998) Tetrahedron: Asymmetry 9: 2641
114.
115.
116.
117.
go back to reference Wolfenden R (1999) Bioorg. Med. Chem. 7: 647 Wolfenden R (1999) Bioorg. Med. Chem. 7: 647
118.
go back to reference International Union of Biochemistry and Molecular Biology (1992) Enzyme Nomenclature. Academic Press, New York International Union of Biochemistry and Molecular Biology (1992) Enzyme Nomenclature. Academic Press, New York
119.
go back to reference Schomburg D (ed) (2002) Enzyme Handbook. Springer, Heidelberg Schomburg D (ed) (2002) Enzyme Handbook. Springer, Heidelberg
120.
go back to reference Appel RD, Bairoch A, Hochstrasser DF (1994) Trends Biochem. Sci. 19: 258 Appel RD, Bairoch A, Hochstrasser DF (1994) Trends Biochem. Sci. 19: 258
122.
123.
go back to reference Crout DHG, Christen M (1989) Biotransformations in Organic Synthesis. In: Scheffold R (ed) Modern Synthetic Methods, vol 5. pp 1–114 Crout DHG, Christen M (1989) Biotransformations in Organic Synthesis. In: Scheffold R (ed) Modern Synthetic Methods, vol 5. pp 1–114
124.
go back to reference Farina V (2004) Adv. Synth. Catal. 346: 1553 Farina V (2004) Adv. Synth. Catal. 346: 1553
125.
go back to reference Behr A (2007) Angewandte Homogene Katalyse. Wiley-VCH, Weinheim, p 40 Behr A (2007) Angewandte Homogene Katalyse. Wiley-VCH, Weinheim, p 40
126.
go back to reference Mahler HR, Cordes HE (1971) Biological Chemistry, 2nd ed. Harper & Row, London Mahler HR, Cordes HE (1971) Biological Chemistry, 2nd ed. Harper & Row, London
127.
go back to reference Simon H, Bader J, Günther H, Neumann S, Thanos J (1985) Angew. Chem., Int. Ed. 24: 539 Simon H, Bader J, Günther H, Neumann S, Thanos J (1985) Angew. Chem., Int. Ed. 24: 539
128.
go back to reference Chaplin MF, Bucke C (1990) Enzyme Technology. Cambridge University Press, New York Chaplin MF, Bucke C (1990) Enzyme Technology. Cambridge University Press, New York
129.
go back to reference White JS, White DC (1997) Source Book of Enzymes. CRC Press, Boca Raton White JS, White DC (1997) Source Book of Enzymes. CRC Press, Boca Raton
130.
go back to reference Spradlin JE (1989) Tailoring Enzymes for Food Processing, in: Whitaker JR, Sonnet PE(eds) ACS Symposium Series, vol 389, p 24, J. Am. Chem. Soc., Washington Spradlin JE (1989) Tailoring Enzymes for Food Processing, in: Whitaker JR, Sonnet PE(eds) ACS Symposium Series, vol 389, p 24, J. Am. Chem. Soc., Washington
Metadata
Title
Introduction and Background Information
Author
Prof. Dr. Kurt Faber
Copyright Year
2011
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-17393-6_1

Premium Partners