Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Introduction and Background

Author : Geeta Gahlawat

Published in: Polyhydroxyalkanoates Biopolymers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The usage of synthetic plastics such as polyethylene and polypropylene was initiated by mankind to enhance the quality and comfort of life without realizing their ubiquitous nature. Now they have become an essential part of contemporary life and are being used increasingly in different industrial applications due to their unique characteristics of strength, durability and resistance to chemicals. The high molecular weight appears to be the main reason for the resistance of these plastics to biodegradation and perseverance in soil for a longer period of time. This non-biodegradable nature of synthetic plastics and dependency on fossil fuels for their production have driven the search for alternative sustainable biotechnological solution with lower environmental impact. In this regard, Polyhydroxyalkanoates (PHAs) are considered as best alternatives as they are produced by fermentation of renewable feedstock and are completely biodegradable. However, despite the considerable research work on PHAs, only limited success has been achieved so far. The main bottleneck in successful utilization of PHAs is their high cost of production. This book chapter presents general introduction on PHAs and their types, and how they came into existence.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85(6):732–743 Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85(6):732–743
go back to reference Alsafadi D, Al-Mashaqbeh O (2017) A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. New Biotechnol 34:47–53 Alsafadi D, Al-Mashaqbeh O (2017) A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. New Biotechnol 34:47–53
go back to reference Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54(4):450–472 Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54(4):450–472
go back to reference Burdon KL, Stokes JC, Kimbrough CE (1942) Studies of the common aerobic spore-forming bacilli: I. Staining for fat with Sudan black B-safranin. J Bacteriol 43(6):717 Burdon KL, Stokes JC, Kimbrough CE (1942) Studies of the common aerobic spore-forming bacilli: I. Staining for fat with Sudan black B-safranin. J Bacteriol 43(6):717
go back to reference Byrom D (1987) Polymer synthesis by microorganisms: technology and economics. Trends Biotechnol 5(9):246–250CrossRef Byrom D (1987) Polymer synthesis by microorganisms: technology and economics. Trends Biotechnol 5(9):246–250CrossRef
go back to reference Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR (2009) Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44(5):509–515CrossRef Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR (2009) Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44(5):509–515CrossRef
go back to reference Cavalheiro JMBT et al (2012) Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour Technol 111:391–397PubMedCrossRef Cavalheiro JMBT et al (2012) Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour Technol 111:391–397PubMedCrossRef
go back to reference De Smet M et al (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154(2):870–878PubMedPubMedCentral De Smet M et al (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154(2):870–878PubMedPubMedCentral
go back to reference Divya G, Archana T, Manzano RA (2013) Polyhydroxy alkonates—a sustainable alternative to petro-based plastics. J Petrol Environ Biotechnol 4:1–8CrossRef Divya G, Archana T, Manzano RA (2013) Polyhydroxy alkonates—a sustainable alternative to petro-based plastics. J Petrol Environ Biotechnol 4:1–8CrossRef
go back to reference Doi Y (1990) Microbial polyesters. VCH Publishers, New York Doi Y (1990) Microbial polyesters. VCH Publishers, New York
go back to reference Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28(14):4822–4828CrossRef Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28(14):4822–4828CrossRef
go back to reference Ebnesajjad S (2012) Plastic films in food packaging: materials, technology and applications. Elsevier William Andrew Publishers, Oxford Ebnesajjad S (2012) Plastic films in food packaging: materials, technology and applications. Elsevier William Andrew Publishers, Oxford
go back to reference Findlay RH, White DC (1983) Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium. Appl Environ Microbiol 45(1):71–78PubMedPubMedCentral Findlay RH, White DC (1983) Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium. Appl Environ Microbiol 45(1):71–78PubMedPubMedCentral
go back to reference Forsyth W, Hayward A, Roberts J (1958) Occurrence of poly-β-hydroxybutyric acid in aerobic gram-negative bacteria. Nature 182(4638):800–801PubMedCrossRef Forsyth W, Hayward A, Roberts J (1958) Occurrence of poly-β-hydroxybutyric acid in aerobic gram-negative bacteria. Nature 182(4638):800–801PubMedCrossRef
go back to reference Fukui T, Doi Y (1997) Cloning and analysis of the poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J Bacteriol 179(15):4821–4830PubMedPubMedCentralCrossRef Fukui T, Doi Y (1997) Cloning and analysis of the poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J Bacteriol 179(15):4821–4830PubMedPubMedCentralCrossRef
go back to reference Fukui T, Shiomi N, Doi Y (1998) Expression and characterization of (R)-specific enoyl coenzyme a hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J Bacteriol 180(3):667–673 Fukui T, Shiomi N, Doi Y (1998) Expression and characterization of (R)-specific enoyl coenzyme a hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J Bacteriol 180(3):667–673
go back to reference Fukui T, Yokomizo S, Kobayashi G (1999) Co-expression of polyhydroxyalkanoate synthase and (R)‐enoyl‐CoA hydratase genes of Aeromonas caviae establishes copolyester biosynthesis pathway in escherichia coli. FEMS Microbiol Lett 170(1):69–75PubMedCrossRef Fukui T, Yokomizo S, Kobayashi G (1999) Co-expression of polyhydroxyalkanoate synthase and (R)‐enoyl‐CoA hydratase genes of Aeromonas caviae establishes copolyester biosynthesis pathway in escherichia coli. FEMS Microbiol Lett 170(1):69–75PubMedCrossRef
go back to reference García IL et al (2013) Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator. Bioresour Technol 130:16–22PubMedCrossRef García IL et al (2013) Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator. Bioresour Technol 130:16–22PubMedCrossRef
go back to reference Genser KF, Renner G, Schwab H (1998) Molecular cloning, sequencing and expression in Escherichia coli of the poly(3-hydroxyalkanoate) synthesis genes from Alcaligenes latus DSM1124. J Biotechnol 64(2–3):123–135CrossRef Genser KF, Renner G, Schwab H (1998) Molecular cloning, sequencing and expression in Escherichia coli of the poly(3-hydroxyalkanoate) synthesis genes from Alcaligenes latus DSM1124. J Biotechnol 64(2–3):123–135CrossRef
go back to reference Haywood GW, Anderson AJ, Ewing DF, Dawes EA (1990) Accumulation of a polyhydroxyalkanoate containing primarily 3-hydroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. strain NCIMB 40135. Appl Environ Microbiol 56(11):3354–3359 Haywood GW, Anderson AJ, Ewing DF, Dawes EA (1990) Accumulation of a polyhydroxyalkanoate containing primarily 3-hydroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. strain NCIMB 40135. Appl Environ Microbiol 56(11):3354–3359
go back to reference Hoffmann N, Steinbüchel A, Rehm BH (2000a) Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxyalkanoate biosynthetic pathway. Appl Microbiol Biotechnol 54(5):665–670PubMedCrossRef Hoffmann N, Steinbüchel A, Rehm BH (2000a) Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxyalkanoate biosynthetic pathway. Appl Microbiol Biotechnol 54(5):665–670PubMedCrossRef
go back to reference Hoffmann N, Steinbüchel A, Rehm BH (2000b) The Pseudomonas aeruginosa phaG gene product is involved in the synthesis of polyhydroxyalkanoic acid consisting of medium-chain-length constituents from non-related carbon sources. FEMS Microbiol Lett 184(2):253–259PubMedCrossRef Hoffmann N, Steinbüchel A, Rehm BH (2000b) The Pseudomonas aeruginosa phaG gene product is involved in the synthesis of polyhydroxyalkanoic acid consisting of medium-chain-length constituents from non-related carbon sources. FEMS Microbiol Lett 184(2):253–259PubMedCrossRef
go back to reference Holmes P (1985) Applications of PHB-a microbially produced biodegradable thermoplastic. Phys Technol 16(1):32CrossRef Holmes P (1985) Applications of PHB-a microbially produced biodegradable thermoplastic. Phys Technol 16(1):32CrossRef
go back to reference Hrabak O (1992) Industrial production of poly-β-hydroxybutyrate. FEMS Microbiol Lett 103(2–4):251–255 Hrabak O (1992) Industrial production of poly-β-hydroxybutyrate. FEMS Microbiol Lett 103(2–4):251–255
go back to reference Huijberts G, de Rijk TC, de Waard P, Eggink G (1994) 13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly (3-hydroxyalkanoate) synthesis. J Bacteriol 176(6):1661–1666PubMedPubMedCentralCrossRef Huijberts G, de Rijk TC, de Waard P, Eggink G (1994) 13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly (3-hydroxyalkanoate) synthesis. J Bacteriol 176(6):1661–1666PubMedPubMedCentralCrossRef
go back to reference Huijberts G, Eggink G, De Waard P, Huisman GW, Witholt B (1992) Pseudomonas putida KT2442 cultivated on glucose accumulates poly (3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58(2):536–544 Huijberts G, Eggink G, De Waard P, Huisman GW, Witholt B (1992) Pseudomonas putida KT2442 cultivated on glucose accumulates poly (3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58(2):536–544
go back to reference Huisman GW, de Leeuw O, Eggink G, Witholt B (1989) Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl Environ Microbiol 55(8):1949–1954 Huisman GW, de Leeuw O, Eggink G, Witholt B (1989) Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl Environ Microbiol 55(8):1949–1954
go back to reference Johnstone B (1990) A throw away answer. Far East Econ Rev 147:62–63 Johnstone B (1990) A throw away answer. Far East Econ Rev 147:62–63
go back to reference Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40(2):607–619CrossRef Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40(2):607–619CrossRef
go back to reference Koller M, Maršálek L, de Sousa Dias MM, Braunegg G (2017) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 37:24–38CrossRef Koller M, Maršálek L, de Sousa Dias MM, Braunegg G (2017) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 37:24–38CrossRef
go back to reference Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G and Witholt B (1988) Formation of Polyesters by Pseudomonas oleovorans: Effect of Substrates on Formation and Composition of Poly-(R)-3-Hydroxyalkanoates and Poly-(R)-3-Hydroxyalkenoates. Appl Environ Microbiol 54(12):2924–2932 Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G and Witholt B (1988) Formation of Polyesters by Pseudomonas oleovorans: Effect of Substrates on Formation and Composition of Poly-(R)-3-Hydroxyalkanoates and Poly-(R)-3-Hydroxyalkenoates. Appl Environ Microbiol 54(12):2924–2932
go back to reference Lemoigne M (1926) Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull Soc Chem Biol 8:770–782 Lemoigne M (1926) Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull Soc Chem Biol 8:770–782
go back to reference Lee SY, Lee Y, Wang F (1999) Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals. Biotechnol Bioeng 65(3):363–368PubMedCrossRef Lee SY, Lee Y, Wang F (1999) Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals. Biotechnol Bioeng 65(3):363–368PubMedCrossRef
go back to reference Loo CY, Sudesh K (2007) Polyhydroxyalkanoates: bio-based microbial plastics and their properties. Malays Polym J 2(2):31–57 Loo CY, Sudesh K (2007) Polyhydroxyalkanoates: bio-based microbial plastics and their properties. Malays Polym J 2(2):31–57
go back to reference Loo CY et al (2005) Biosynthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant. Biotechnol Lett 27(18):1405–1410PubMedCrossRef Loo CY et al (2005) Biosynthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant. Biotechnol Lett 27(18):1405–1410PubMedCrossRef
go back to reference Macrae R, Wilkinson J (1958) Poly-β-hyroxybutyrate metabolism in washed suspensions of Bacillus cereus and Bacillus megaterium. J Gen Appl Microbiol 19(1):210–222CrossRef Macrae R, Wilkinson J (1958) Poly-β-hyroxybutyrate metabolism in washed suspensions of Bacillus cereus and Bacillus megaterium. J Gen Appl Microbiol 19(1):210–222CrossRef
go back to reference Madison LL, Huisman GW (1999) Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic. Microbiol Mol Biol Rev 63(1):21–53 Madison LL, Huisman GW (1999) Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic. Microbiol Mol Biol Rev 63(1):21–53
go back to reference Ostle AG, Holt J (1982) Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 44(1):238–241PubMedPubMedCentral Ostle AG, Holt J (1982) Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 44(1):238–241PubMedPubMedCentral
go back to reference Page WJ, Knosp O (1989) Hyperproduction of poly-β-hydroxybutyrate during exponential growth of Azotobacter vinelandii UWD. Appl Environ Microbiol 55(6):1334–1339 Page WJ, Knosp O (1989) Hyperproduction of poly-β-hydroxybutyrate during exponential growth of Azotobacter vinelandii UWD. Appl Environ Microbiol 55(6):1334–1339
go back to reference Panda B, Jain P, Sharma L, Mallick N (2006) Optimization of cultural and nutritional conditions for accumulation of poly-β-hydroxybutyrate in Synechocystis sp. PCC 6803. Bioresour Technol 97(11):1296–1301PubMedCrossRef Panda B, Jain P, Sharma L, Mallick N (2006) Optimization of cultural and nutritional conditions for accumulation of poly-β-hydroxybutyrate in Synechocystis sp. PCC 6803. Bioresour Technol 97(11):1296–1301PubMedCrossRef
go back to reference Pedrós-Alió C, Mas J, Guerrero R (1985) The influence of poly-β-hydroxybutyrate accumulation on cell volume and buoyant density in Alcaligenes eutrophus. Arch Microbiol 143(2):178–184CrossRef Pedrós-Alió C, Mas J, Guerrero R (1985) The influence of poly-β-hydroxybutyrate accumulation on cell volume and buoyant density in Alcaligenes eutrophus. Arch Microbiol 143(2):178–184CrossRef
go back to reference Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82(3):233–247CrossRef Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82(3):233–247CrossRef
go back to reference Reddy MV et al (2016) Production of poly-3-hydroxybutyrate (P3HB) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) P (3HB-co-3HV) from synthetic wastewater using Hydrogenophaga palleronii. Bioresour Technol 215:155–162CrossRef Reddy MV et al (2016) Production of poly-3-hydroxybutyrate (P3HB) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) P (3HB-co-3HV) from synthetic wastewater using Hydrogenophaga palleronii. Bioresour Technol 215:155–162CrossRef
go back to reference Rehm BH, Krüger N, Steinbüchel A (1998) A New Metabolic Link between Fatty Acid de NovoSynthesis and Polyhydroxyalkanoic Acid Synthesis The PHAG Gene from Pseudomonas Putida kt2440 Encodes A 3-Hydroxyacyl-Acyl Carrier Protein-Coenzyme A Transferase. J Biol Chem 273(37):24044–24051 Rehm BH, Krüger N, Steinbüchel A (1998) A New Metabolic Link between Fatty Acid de NovoSynthesis and Polyhydroxyalkanoic Acid Synthesis The PHAG Gene from Pseudomonas Putida kt2440 Encodes A 3-Hydroxyacyl-Acyl Carrier Protein-Coenzyme A Transferase. J Biol Chem 273(37):24044–24051
go back to reference Rehm BH, Mitsky TA and Steinbüchel A (2001) Role of Fatty Acid De Novo Biosynthesis in Polyhydroxyalkanoic Acid (PHA) and Rhamnolipid Synthesis by Pseudomonads: Establishment of the Transacylase (PhaG)-Mediated Pathway for PHA Biosynthesis in Escherichia coli. Appl Environ Microbiol 67(7):3102–3109PubMedPubMedCentralCrossRef Rehm BH, Mitsky TA and Steinbüchel A (2001) Role of Fatty Acid De Novo Biosynthesis in Polyhydroxyalkanoic Acid (PHA) and Rhamnolipid Synthesis by Pseudomonads: Establishment of the Transacylase (PhaG)-Mediated Pathway for PHA Biosynthesis in Escherichia coli. Appl Environ Microbiol 67(7):3102–3109PubMedPubMedCentralCrossRef
go back to reference Reinecke F, Steinbuechel A (2008) Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotecAdd hnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol 16(1–2):91–108 Reinecke F, Steinbuechel A (2008) Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotecAdd hnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol 16(1–2):91–108
go back to reference Senior P, Dawes E (1971) Poly-beta-hydroxybutyrate biosynthesis and the regulation of glucose metabolism in Azotobacter beijerinckii. Biochem J 125:55–66PubMedPubMedCentralCrossRef Senior P, Dawes E (1971) Poly-beta-hydroxybutyrate biosynthesis and the regulation of glucose metabolism in Azotobacter beijerinckii. Biochem J 125:55–66PubMedPubMedCentralCrossRef
go back to reference Singh AK, Mallick N (2008) Enhanced production of SCL-LCL-PHA co-polymer by sludge-isolated Pseudomonas aeruginosa MTCC 7925. Lett Appl Microbiol 46(3):350–357PubMedCrossRef Singh AK, Mallick N (2008) Enhanced production of SCL-LCL-PHA co-polymer by sludge-isolated Pseudomonas aeruginosa MTCC 7925. Lett Appl Microbiol 46(3):350–357PubMedCrossRef
go back to reference Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ (1998) Multiple β-ketothiolases mediate poly (β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180(8):1979–1987 Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ (1998) Multiple β-ketothiolases mediate poly (β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180(8):1979–1987
go back to reference Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochemical Eng J 16(2):81–96CrossRef Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochemical Eng J 16(2):81–96CrossRef
go back to reference Sudesh K (2000) Molecular design and biosynthesis of biodegradable polyesters. Polym Adv Technol 11(8–12):865–872CrossRef Sudesh K (2000) Molecular design and biosynthesis of biodegradable polyesters. Polym Adv Technol 11(8–12):865–872CrossRef
go back to reference Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress Polym Sci 25(10):1503–1555CrossRef Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress Polym Sci 25(10):1503–1555CrossRef
go back to reference Sudesh K, Doi Y (2005) Polyhydroxyalkanoates. Handbook of biodegradable polymers, pp 219–256 Sudesh K, Doi Y (2005) Polyhydroxyalkanoates. Handbook of biodegradable polymers, pp 219–256
go back to reference Talsness CE, Andrade AJ, Kuriyama SN, Taylor JA, vom Saal FS (2009) Components of plastic: experimental studies in animals and relevance for human health. Philosophical Trans Royal Soc B: Biological Sci 364(1526):2079–2096CrossRef Talsness CE, Andrade AJ, Kuriyama SN, Taylor JA, vom Saal FS (2009) Components of plastic: experimental studies in animals and relevance for human health. Philosophical Trans Royal Soc B: Biological Sci 364(1526):2079–2096CrossRef
go back to reference Thompson RC, Moore CJ, vom Saal FS, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Philosophical Trans Royal Soc B: Biol Sci 364(1526):2153–2166CrossRef Thompson RC, Moore CJ, vom Saal FS, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Philosophical Trans Royal Soc B: Biol Sci 364(1526):2153–2166CrossRef
go back to reference Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56(11):3360–3367 Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56(11):3360–3367
go back to reference Tokiwa Y, Ugwu CU (2007) Biotechnological production of (R)-3-hydroxybutyric acid monomer. J Biotechnol 132(3):264–272PubMedCrossRef Tokiwa Y, Ugwu CU (2007) Biotechnological production of (R)-3-hydroxybutyric acid monomer. J Biotechnol 132(3):264–272PubMedCrossRef
go back to reference Tsuge T (2002) Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J Biosci Bioeng 94(6):579–584PubMedCrossRef Tsuge T (2002) Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J Biosci Bioeng 94(6):579–584PubMedCrossRef
go back to reference Valentin H, Dennis D (1996) Metabolic pathway for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) formation in Nocardia corallina: inactivation of mutB by chromosomal integration of a kanamycin resistance gene. Appl Environ Microbiol 62(2):372–379 Valentin H, Dennis D (1996) Metabolic pathway for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) formation in Nocardia corallina: inactivation of mutB by chromosomal integration of a kanamycin resistance gene. Appl Environ Microbiol 62(2):372–379
go back to reference Van-Thuoc D, Huu-Phong T, Minh-Khuong D, Hatti-Kaul R (2015) Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production by a moderate halophile Yangia sp. ND199 using glycerol as a carbon source. Appl Biochem Biotechnol 175(6):3120–3132PubMedCrossRef Van-Thuoc D, Huu-Phong T, Minh-Khuong D, Hatti-Kaul R (2015) Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production by a moderate halophile Yangia sp. ND199 using glycerol as a carbon source. Appl Biochem Biotechnol 175(6):3120–3132PubMedCrossRef
go back to reference Verlinden RA et al (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102(6):1437–1449PubMedCrossRef Verlinden RA et al (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102(6):1437–1449PubMedCrossRef
go back to reference Verlinden RA, Hill DJ, Kenward M, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102(6):1437–1449PubMedCrossRef Verlinden RA, Hill DJ, Kenward M, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102(6):1437–1449PubMedCrossRef
go back to reference Wallen LL, Rohwedder WK (1974) Poly-β-hydroxyalkanoate from activated sludge. Environ Sci Technol 8(6):576–579CrossRef Wallen LL, Rohwedder WK (1974) Poly-β-hydroxyalkanoate from activated sludge. Environ Sci Technol 8(6):576–579CrossRef
go back to reference Wang Y, Bian YZ, Wu Q, Chen GQ (2008) Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29(19):2858–2868PubMedCrossRef Wang Y, Bian YZ, Wu Q, Chen GQ (2008) Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29(19):2858–2868PubMedCrossRef
go back to reference Wang Y et al (2013) Biosynthesis and thermal properties of PHBV produced from levulinic acid by Ralstonia eutropha. PLoS ONE 8(4):1–8CrossRef Wang Y et al (2013) Biosynthesis and thermal properties of PHBV produced from levulinic acid by Ralstonia eutropha. PLoS ONE 8(4):1–8CrossRef
go back to reference Wang Y, Yin J, Chen GQ (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30:59–65PubMedCrossRef Wang Y, Yin J, Chen GQ (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30:59–65PubMedCrossRef
go back to reference Williams SF, Martin DP (2002) Applications of PHAs in medicine and pharmacy. Biopolymers 4:91–127 Williams SF, Martin DP (2002) Applications of PHAs in medicine and pharmacy. Biopolymers 4:91–127
go back to reference Williamson D, Wilkinson J (1958) The isolation and estimation of the poly-β-hydroxybutyrate inclusions of Bacillus Species. J Gen Appl Microbiol 19(1):198–209CrossRef Williamson D, Wilkinson J (1958) The isolation and estimation of the poly-β-hydroxybutyrate inclusions of Bacillus Species. J Gen Appl Microbiol 19(1):198–209CrossRef
go back to reference Williams DR, Anderson AJ, Dawes EA, Ewing DF (1994) Production of a co-polyester of 3-hydroxybutyric acid and 3-hydroxyvaleric acid from succinic acid by Rhodococcus ruber: biosynthetic considerations. Appl Microbiol Biotechnol 40(5):717–723CrossRef Williams DR, Anderson AJ, Dawes EA, Ewing DF (1994) Production of a co-polyester of 3-hydroxybutyric acid and 3-hydroxyvaleric acid from succinic acid by Rhodococcus ruber: biosynthetic considerations. Appl Microbiol Biotechnol 40(5):717–723CrossRef
go back to reference Yu PH, Chua H, Huang AL, Ho KP (1999) Conversion of industrial food wastes by Alcaligenes latus into polyhydroxyalkanoates. Appl Biochem Biotechnol 78(1–3):445–454CrossRef Yu PH, Chua H, Huang AL, Ho KP (1999) Conversion of industrial food wastes by Alcaligenes latus into polyhydroxyalkanoates. Appl Biochem Biotechnol 78(1–3):445–454CrossRef
go back to reference Zhao K, Deng Y, Chun CJ, Chen GQ (2003) Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials 24(6):1041–1045PubMedCrossRef Zhao K, Deng Y, Chun CJ, Chen GQ (2003) Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials 24(6):1041–1045PubMedCrossRef
go back to reference Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53(1):5–21PubMedCrossRef Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53(1):5–21PubMedCrossRef
Metadata
Title
Introduction and Background
Author
Geeta Gahlawat
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-33897-8_1

Premium Partners