Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

Published in:
Cover of the book

2022 | OriginalPaper | Chapter

1. Introduction of Carbon Nanostructures

Author : Yanjie Su

Published in: High-Performance Carbon-Based Optoelectronic Nanodevices

Publisher: Springer Singapore

Abstract

Unique electron configuration and multiple chemical bonding possibility make carbon form various carbon allotropes with completely different properties, which can exhibit semiconducting, metallic or insulating, highly transparent or extremely dark, and variable thermal conductivity. Nowadays, a large number of carbon nanomaterials with zero-, one- and two-dimensional structures have been extensively explored and utilized in the different fields. Especially, single-walled carbon nanotubes (SWCNTs) and graphene are considered as great promising candidates for next-generation nanoelectronics and nano-optoelectronics. Therefore, low-dimensional carbon nanomaterials have attracted more and more attentions from both academia and industry. With the development of preparation and process technologies, they are expected to be more widely practically applied in various fields. Herein, we will comprehensively introduce the carbon and its low-dimensional allotropes. And the current applications of carbon nanotubes and graphene in various fields will be simply introduced. Finally, the current challenges and further perspectives will also be discussed at the end of this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013). Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev, 42: 2824–2860. CrossRef Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013). Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev, 42: 2824–2860. CrossRef
2.
go back to reference Dai LM, Chang DW, Baek JB, Lu W (2012). Carbon nanomaterials for advanced energy conversion and storage. Small, 8(8):1130–1166. CrossRef Dai LM, Chang DW, Baek JB, Lu W (2012). Carbon nanomaterials for advanced energy conversion and storage. Small, 8(8):1130–1166. CrossRef
3.
go back to reference Hirsch A (2010). The era of carbon allotropes. Nat Mater, 9(11): 868–871. CrossRef Hirsch A (2010). The era of carbon allotropes. Nat Mater, 9(11): 868–871. CrossRef
4.
go back to reference Ding L, Zhang Z, Liang S, Pei T, Wang S, Li Y, Zhou W, Liu J, Peng L (2012). CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nat Commun, 3: 677. CrossRef Ding L, Zhang Z, Liang S, Pei T, Wang S, Li Y, Zhou W, Liu J, Peng L (2012). CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nat Commun, 3: 677. CrossRef
5.
go back to reference Cao Q (2021). Carbon nanotube transistor technology for More-Moore scaling. Nano Res, 1–19. Cao Q (2021). Carbon nanotube transistor technology for More-Moore scaling. Nano Res, 1–19.
6.
go back to reference Du X, Skachko I, Barker A, Andrei EY (2008). Approaching ballistic transport in suspended graphene. Nat Nanotech, 3(8): 491–495. CrossRef Du X, Skachko I, Barker A, Andrei EY (2008). Approaching ballistic transport in suspended graphene. Nat Nanotech, 3(8): 491–495. CrossRef
7.
go back to reference Perebeinos V, Avouris P (2008). Phonon and electronic nonradiative decay mechanisms of excitons in carbon nanotubes. Phys Rev Lett, 101(5): 057401. Perebeinos V, Avouris P (2008). Phonon and electronic nonradiative decay mechanisms of excitons in carbon nanotubes. Phys Rev Lett, 101(5): 057401.
8.
go back to reference Wen C, Li J, Kitazawa K, Aida T, Honma I, Komiyama H, Yamada K (1992). Electrical conductivity of a pure C 60 single crystal. Appl Phys Lett, 61(18): 2162–2163. CrossRef Wen C, Li J, Kitazawa K, Aida T, Honma I, Komiyama H, Yamada K (1992). Electrical conductivity of a pure C 60 single crystal. Appl Phys Lett, 61(18): 2162–2163. CrossRef
9.
go back to reference Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990). Solid C 60: a new form of carbon. Nature, 347(6291): 354–358. CrossRef Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990). Solid C 60: a new form of carbon. Nature, 347(6291): 354–358. CrossRef
10.
go back to reference Zhu SE, Li F, Wang GW (2013). Mechanochemistry of fullerenes and related materials. Chem Soc Rev, 42(18): 7535–7570. CrossRef Zhu SE, Li F, Wang GW (2013). Mechanochemistry of fullerenes and related materials. Chem Soc Rev, 42(18): 7535–7570. CrossRef
11.
go back to reference Georgakilas V, Perman JA, Tucek J, Zboril R. (2015). Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev, 115(11): 4744–4822. CrossRef Georgakilas V, Perman JA, Tucek J, Zboril R. (2015). Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev, 115(11): 4744–4822. CrossRef
12.
go back to reference Castro E, Garcia AH, Zavala G, Echegoyen L (2017). Fullerenes in biology and medicine. J Mater Chem B, 5(32): 6523–6535. CrossRef Castro E, Garcia AH, Zavala G, Echegoyen L (2017). Fullerenes in biology and medicine. J Mater Chem B, 5(32): 6523–6535. CrossRef
13.
go back to reference Jun GH, Jin SH, Lee B, Kim BH, Chae WS, Hong SH, Jeon S (2013). Enhanced conduction and charge-selectivity by N-doped graphene flakes in the active layer of bulk-heterojunction organic solar cells. Energy Environ Sci, 6(10): 3000–3006. CrossRef Jun GH, Jin SH, Lee B, Kim BH, Chae WS, Hong SH, Jeon S (2013). Enhanced conduction and charge-selectivity by N-doped graphene flakes in the active layer of bulk-heterojunction organic solar cells. Energy Environ Sci, 6(10): 3000–3006. CrossRef
14.
go back to reference Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J (2020). Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv Mater, 32(19): 1908205. CrossRef Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J (2020). Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv Mater, 32(19): 1908205. CrossRef
15.
go back to reference Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart K, Raker K, Scrivens WA (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, J Am Chem Soc, 126: 12736–12737. CrossRef Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart K, Raker K, Scrivens WA (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, J Am Chem Soc, 126: 12736–12737. CrossRef
16.
go back to reference Takakura A, Beppu K, Nishihara T, Fukui A, Kozeki T, Namazu T, Miyauchi Y, Itami K. (2019). Strength of carbon nanotubes depends on their chemical structures. Nature Commun, 10(1): 1–7. CrossRef Takakura A, Beppu K, Nishihara T, Fukui A, Kozeki T, Namazu T, Miyauchi Y, Itami K. (2019). Strength of carbon nanotubes depends on their chemical structures. Nature Commun, 10(1): 1–7. CrossRef
17.
go back to reference Cai BF, Su YJ, Tao ZJ, Hu J, Zou C, Yang Z, Zhang YF (2018). Highly sensitive broadband single-walled carbon nanotube photodetectors en-hanced by separated graphene nanosheets. Adv Optical Mater, 6(23): 1800791. CrossRef Cai BF, Su YJ, Tao ZJ, Hu J, Zou C, Yang Z, Zhang YF (2018). Highly sensitive broadband single-walled carbon nanotube photodetectors en-hanced by separated graphene nanosheets. Adv Optical Mater, 6(23): 1800791. CrossRef
18.
go back to reference Avouris P, Freitag M, Perebeinos V (2008). Carbon-nanotube photonics and optoelectronics. Nat Photonics, 2(6): 341–350. CrossRef Avouris P, Freitag M, Perebeinos V (2008). Carbon-nanotube photonics and optoelectronics. Nat Photonics, 2(6): 341–350. CrossRef
19.
go back to reference Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai HJ (2000). Nanotube molecular wires as chemical sensors. Science, 287(5453): 622–625. CrossRef Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai HJ (2000). Nanotube molecular wires as chemical sensors. Science, 287(5453): 622–625. CrossRef
20.
go back to reference Gaviria Rojas WA, Hersam MC (2020). Chirality-enriched carbon nanotubes for next-generation computing. Adv. Mater., 32(41): 1905654. CrossRef Gaviria Rojas WA, Hersam MC (2020). Chirality-enriched carbon nanotubes for next-generation computing. Adv. Mater., 32(41): 1905654. CrossRef
21.
go back to reference Liu Z, Tabakman S, Welsher K, Dai H (2009). Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res, 2(2): 85–120. CrossRef Liu Z, Tabakman S, Welsher K, Dai H (2009). Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res, 2(2): 85–120. CrossRef
22.
go back to reference Hecht DS, Hu L, Irvin G (2011). Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater, 23(13): 1482–1513. CrossRef Hecht DS, Hu L, Irvin G (2011). Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater, 23(13): 1482–1513. CrossRef
23.
go back to reference Ni J, Li Y (2016). Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv Energy Mater, 6(17): 1600278. CrossRef Ni J, Li Y (2016). Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv Energy Mater, 6(17): 1600278. CrossRef
24.
go back to reference Xu ZL, Kim JK, Kang K (2018). Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today, 19: 84–107. CrossRef Xu ZL, Kim JK, Kang K (2018). Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today, 19: 84–107. CrossRef
25.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004). Electric field effect in atomically thin carbon films. Science, 306(5696): 666–669. CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004). Electric field effect in atomically thin carbon films. Science, 306(5696): 666–669. CrossRef
26.
go back to reference Nika DL, Pokatilov EP, Askerov AS, Balandin AA (2009). Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys Rev B, 79(15): 155413. Nika DL, Pokatilov EP, Askerov AS, Balandin AA (2009). Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys Rev B, 79(15): 155413.
27.
go back to reference Zhang J, Lin L, Jia K, Sun L, Peng H, Liu Z (2020). Controlled growth of single-crystal graphene films. Adv Mater, 32(1): 1903266. CrossRef Zhang J, Lin L, Jia K, Sun L, Peng H, Liu Z (2020). Controlled growth of single-crystal graphene films. Adv Mater, 32(1): 1903266. CrossRef
28.
go back to reference Yi M, Shen Z (2015). A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A, 3(22): 11700–11715. CrossRef Yi M, Shen Z (2015). A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A, 3(22): 11700–11715. CrossRef
29.
go back to reference Chen J, Yao B, Li C, Shi G (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64: 225–229. CrossRef Chen J, Yao B, Li C, Shi G (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64: 225–229. CrossRef
30.
go back to reference Yang W, Chen G, Shi Z, Liu CC, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y, Zhang G (2013). Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat Mater, 12(9): 792–797. CrossRef Yang W, Chen G, Shi Z, Liu CC, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y, Zhang G (2013). Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat Mater, 12(9): 792–797. CrossRef
31.
go back to reference Li X, Cai W, An J, Kim SY, Nah J, Yang DX, Piner R, Velamakanni A, Jung I, Tutuc E (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932): 1312–1314. CrossRef Li X, Cai W, An J, Kim SY, Nah J, Yang DX, Piner R, Velamakanni A, Jung I, Tutuc E (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932): 1312–1314. CrossRef
32.
go back to reference Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun'Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnol, 3(9): 563–568. CrossRef Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun'Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnol, 3(9): 563–568. CrossRef
33.
go back to reference Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM, Tour JM (2010). Improved synthesis of graphene oxide. ACS Nano, 4(8): 4806–4814. CrossRef Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM, Tour JM (2010). Improved synthesis of graphene oxide. ACS Nano, 4(8): 4806–4814. CrossRef
34.
go back to reference Compton OC, Nguyen ST (2010). Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small, 6(6): 711–723. CrossRef Compton OC, Nguyen ST (2010). Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small, 6(6): 711–723. CrossRef
35.
go back to reference Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010). Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater, 22(35): 3906–3924. CrossRef Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010). Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater, 22(35): 3906–3924. CrossRef
36.
go back to reference Wang B, Ruan T, Chen Y, Jin F, Peng L, Zhou Y, Wang D, Dou S (2020). Graphene-based composites for electrochemical energy storage. Energy Storage Mater, 24: 22–51. CrossRef Wang B, Ruan T, Chen Y, Jin F, Peng L, Zhou Y, Wang D, Dou S (2020). Graphene-based composites for electrochemical energy storage. Energy Storage Mater, 24: 22–51. CrossRef
37.
go back to reference Singh E, Meyyappan M, Nalwa HS (2017). Flexible graphene-based wearable gas and chemical sensors. ACS Appl Mater Interfaces, 9(40): 34544–34586. CrossRef Singh E, Meyyappan M, Nalwa HS (2017). Flexible graphene-based wearable gas and chemical sensors. ACS Appl Mater Interfaces, 9(40): 34544–34586. CrossRef
38.
go back to reference Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D (2010). Architecture of graphdiyne nanoscale films. Chem Commun, 46: 3256–3258. CrossRef Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D (2010). Architecture of graphdiyne nanoscale films. Chem Commun, 46: 3256–3258. CrossRef
39.
go back to reference Li Y, Xu L, Liu H, Li Y (2014). Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem Soc Rev, 43: 2572–2586. CrossRef Li Y, Xu L, Liu H, Li Y (2014). Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem Soc Rev, 43: 2572–2586. CrossRef
40.
go back to reference Ge C, Chen J, Tang S, Du Y, Tang N (2019). Review of the electronic, optical, and magnetic properties of graphdiyne: from theories to experiments. ACS Appl Mater Interfaces, 11(3): 2707–2716. CrossRef Ge C, Chen J, Tang S, Du Y, Tang N (2019). Review of the electronic, optical, and magnetic properties of graphdiyne: from theories to experiments. ACS Appl Mater Interfaces, 11(3): 2707–2716. CrossRef
41.
go back to reference Peng LM, Zhang Z, Wang S (2014). Carbon nanotube electronics: recent advances. Mater Today, 17(9): 433–442. CrossRef Peng LM, Zhang Z, Wang S (2014). Carbon nanotube electronics: recent advances. Mater Today, 17(9): 433–442. CrossRef
42.
go back to reference Hills G, Lau C, Wright A, Fuller S, Bishop MD, Srimani T, Kanhaiya P, Ho R, Amer A, Stein Y, Murphy D, Arvind, Chandrakasan A, Shulaker MM (2019). Modern microprocessor built from complementary carbon nanotube transistors. Nature, 572(7771): 595–602. CrossRef Hills G, Lau C, Wright A, Fuller S, Bishop MD, Srimani T, Kanhaiya P, Ho R, Amer A, Stein Y, Murphy D, Arvind, Chandrakasan A, Shulaker MM (2019). Modern microprocessor built from complementary carbon nanotube transistors. Nature, 572(7771): 595–602. CrossRef
43.
go back to reference Liu L, Han J, Xu L, Zhou J, Zhao C, Ding S, Shi H, Xiao M, Ding L, Ma Z, Jin C, Zhang Z, Peng L (2020). Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science, 368(6493): 850–856. CrossRef Liu L, Han J, Xu L, Zhou J, Zhao C, Ding S, Shi H, Xiao M, Ding L, Ma Z, Jin C, Zhang Z, Peng L (2020). Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science, 368(6493): 850–856. CrossRef
44.
go back to reference Shi H, Ding L, Zhong D, Han J, Liu L, Xu L, Sun P, Wang H, Zhou J, Fang L, Zhang Z, Peng L (2021). Radiofrequency transistors based on aligned carbon nanotube arrays. Nature Electronics, 4(6): 405–415. CrossRef Shi H, Ding L, Zhong D, Han J, Liu L, Xu L, Sun P, Wang H, Zhou J, Fang L, Zhang Z, Peng L (2021). Radiofrequency transistors based on aligned carbon nanotube arrays. Nature Electronics, 4(6): 405–415. CrossRef
45.
go back to reference Kong W, Kum H, Bae SH, Shim J, Kim H, Kong L, Meng Y, Wang K, Kim C, Kim J (2019). Path towards graphene commercialization from lab to market. Nature Nanotech, 14(10): 927–938. CrossRef Kong W, Kum H, Bae SH, Shim J, Kim H, Kong L, Meng Y, Wang K, Kim C, Kim J (2019). Path towards graphene commercialization from lab to market. Nature Nanotech, 14(10): 927–938. CrossRef
46.
go back to reference Wu Y, Lin Y, Bol AA, Jenkins KA, Xia F, Farmer DB, Zhu Y, Avouris P (2011). High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 472: 74–78. CrossRef Wu Y, Lin Y, Bol AA, Jenkins KA, Xia F, Farmer DB, Zhu Y, Avouris P (2011). High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 472: 74–78. CrossRef
47.
go back to reference Cheng R, Bai JW, Liao L, Zhou HL, Chen Y, Liu LX, Lin YC, Jiang S, Huang Y, Duan XF (2012). High-frequency self-aligned graphene transistors with transferred gate stacks. Proc Nat Acad Sci, 109: 11588–11592. CrossRef Cheng R, Bai JW, Liao L, Zhou HL, Chen Y, Liu LX, Lin YC, Jiang S, Huang Y, Duan XF (2012). High-frequency self-aligned graphene transistors with transferred gate stacks. Proc Nat Acad Sci, 109: 11588–11592. CrossRef
48.
go back to reference Wu Y, Zou X, Sun M, Cao Z, Wang X, Huo S, Zhou JJ, Yang Y, Yu XX, Kong YC, Yu GH, Liao L, Chen T (2016). 200 GHz Maximum oscillation frequency in CVD graphene radio frequency transistors. ACS Appl Mater Interfaces, 8: 25645–25649. CrossRef Wu Y, Zou X, Sun M, Cao Z, Wang X, Huo S, Zhou JJ, Yang Y, Yu XX, Kong YC, Yu GH, Liao L, Chen T (2016). 200 GHz Maximum oscillation frequency in CVD graphene radio frequency transistors. ACS Appl Mater Interfaces, 8: 25645–25649. CrossRef
49.
go back to reference He X, Léonard F, Kono J (2015). Uncooled carbon nanotube photodetectors. Adv Optical Mater, 3(8): 989–1011. CrossRef He X, Léonard F, Kono J (2015). Uncooled carbon nanotube photodetectors. Adv Optical Mater, 3(8): 989–1011. CrossRef
50.
go back to reference Ahn YH, Tsen AW, Kim B, Park YW, Park J (2007). Photocurrent imaging of p-n junctions in ambipolar carbon nanotube transistors. Nano Lett, 7(11): 3320–3323. CrossRef Ahn YH, Tsen AW, Kim B, Park YW, Park J (2007). Photocurrent imaging of p-n junctions in ambipolar carbon nanotube transistors. Nano Lett, 7(11): 3320–3323. CrossRef
51.
go back to reference Yang L, Wang S, Zeng Q, Zhang Z, Peng LM (2013). Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection. Small, 9(8): 1225–1236. CrossRef Yang L, Wang S, Zeng Q, Zhang Z, Peng LM (2013). Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection. Small, 9(8): 1225–1236. CrossRef
52.
go back to reference Liu Y, Wei N, Zeng Q, Han J, Huang H, Zhong D, Wang F, Ding L, Xia J, Xu H, Ma Z, Qiu S, Li Q, Liang X, Zhang Z, Wang S, Peng L (2016). Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability. Adv Optical Mater, 4(2): 238–245. CrossRef Liu Y, Wei N, Zeng Q, Han J, Huang H, Zhong D, Wang F, Ding L, Xia J, Xu H, Ma Z, Qiu S, Li Q, Liang X, Zhang Z, Wang S, Peng L (2016). Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability. Adv Optical Mater, 4(2): 238–245. CrossRef
53.
go back to reference Itkis ME, Borondics F, Yu A, Haddon RC (2006). Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Sci-ence, 312(5772): 413–416. CrossRef Itkis ME, Borondics F, Yu A, Haddon RC (2006). Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Sci-ence, 312(5772): 413–416. CrossRef
54.
go back to reference St-Antoine BC, Ménard D, Martel R (2009). Position sensitive pho-tothermoelectric effect in suspended single-walled carbon nanotube films. Nano Lett, 9(10): 3503–3508. CrossRef St-Antoine BC, Ménard D, Martel R (2009). Position sensitive pho-tothermoelectric effect in suspended single-walled carbon nanotube films. Nano Lett, 9(10): 3503–3508. CrossRef
55.
go back to reference Huo T, Yin H, Zhou D, Sun L, Tian T, Wei H, Hu N, Yang, Zhang Y, Su Y (2020). Self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions. ACS Sustainable Chem Eng, 8(41): 15532–15539. CrossRef Huo T, Yin H, Zhou D, Sun L, Tian T, Wei H, Hu N, Yang, Zhang Y, Su Y (2020). Self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions. ACS Sustainable Chem Eng, 8(41): 15532–15539. CrossRef
56.
go back to reference Flemban TH, Haque MA, Ajia I, Alwadai N, Mitra S, Wu T, Roqan IS (2017). A photodetector based on p-Si/n-ZnO nanotube heterojunctions with high ultraviolet responsivity. ACS Appl Mater Interfaces, 9(42): 37120–37127. CrossRef Flemban TH, Haque MA, Ajia I, Alwadai N, Mitra S, Wu T, Roqan IS (2017). A photodetector based on p-Si/n-ZnO nanotube heterojunctions with high ultraviolet responsivity. ACS Appl Mater Interfaces, 9(42): 37120–37127. CrossRef
57.
go back to reference Riaz A, Alam A, Selvasundaram PB, Dehm S, Hennrich F, Kappes MM, Krupke R (2019). Near-infrared photoresponse of waveguide-integrated carbon nanotube–silicon junctions Adv Electron Mater, 5(1): 1800265. Riaz A, Alam A, Selvasundaram PB, Dehm S, Hennrich F, Kappes MM, Krupke R (2019). Near-infrared photoresponse of waveguide-integrated carbon nanotube–silicon junctions Adv Electron Mater, 5(1): 1800265.
58.
go back to reference Park S, Kim SJ, Nam JH, Pitner G, Lee TH, Ayzner AL, Wang HL, Fong SW, Vosgueritchian M, Park YJ, Brongersma ML, Bao ZN (2015). Sig-nificant enhancement of infrared photodetector sensitivity using a semi-conducting single-walled carbon nanotube/C 60 phototransistor. Adv Mater, 27: 759–765. CrossRef Park S, Kim SJ, Nam JH, Pitner G, Lee TH, Ayzner AL, Wang HL, Fong SW, Vosgueritchian M, Park YJ, Brongersma ML, Bao ZN (2015). Sig-nificant enhancement of infrared photodetector sensitivity using a semi-conducting single-walled carbon nanotube/C 60 phototransistor. Adv Mater, 27: 759–765. CrossRef
59.
go back to reference Bergemann K, Léonard F (2018). Room-temperature phototransistor with negative photoresponsivity of 10 8 AW -1 using fullerene-sensitized aligned carbon nanotubes. Small, 14(42): 1802806. CrossRef Bergemann K, Léonard F (2018). Room-temperature phototransistor with negative photoresponsivity of 10 8 AW -1 using fullerene-sensitized aligned carbon nanotubes. Small, 14(42): 1802806. CrossRef
60.
go back to reference Liu Y, Wang F, Wang X, Wang X, Flahaut E, Liu X, Li Y, Wang X, Xu Y, Shi Y, Zhang R (2015). Planar carbon nanotube–graphene hybrid films for high-performance broadband photodetectors. Nat Commun, 6: 8589. CrossRef Liu Y, Wang F, Wang X, Wang X, Flahaut E, Liu X, Li Y, Wang X, Xu Y, Shi Y, Zhang R (2015). Planar carbon nanotube–graphene hybrid films for high-performance broadband photodetectors. Nat Commun, 6: 8589. CrossRef
61.
go back to reference Kim CO, Kim S, Shin DH, Kang SS, Kim JM, Jang CW, Joo SS, Lee JS, Kim JH, Choi SH, Hwang E (2014). High photoresponsivity in an all-graphene p–n vertical junction photodetector. Nature Commun, 5(1): 1–7. Kim CO, Kim S, Shin DH, Kang SS, Kim JM, Jang CW, Joo SS, Lee JS, Kim JH, Choi SH, Hwang E (2014). High photoresponsivity in an all-graphene p–n vertical junction photodetector. Nature Commun, 5(1): 1–7.
62.
go back to reference Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, de Arquer FPG, Gatti F, Koppens FHL (2012). Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat Nanotechol, 7: 363–368. CrossRef Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, de Arquer FPG, Gatti F, Koppens FHL (2012). Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat Nanotechol, 7: 363–368. CrossRef
63.
go back to reference Ni Z, Ma L, Du S, Xu Y, Yuan M, Fang H, Wang Z, Xu M, Li D, Yang J, Hu W, Pi X, Yang D (2017). Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano, 11(10): 9854–9862. CrossRef Ni Z, Ma L, Du S, Xu Y, Yuan M, Fang H, Wang Z, Xu M, Li D, Yang J, Hu W, Pi X, Yang D (2017). Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano, 11(10): 9854–9862. CrossRef
64.
go back to reference Zhang W, Chuu CP, Huang JK, Chen CH, Tsai ML, Chang YH, Liang CT, Chen YZ, Chueh YL, He JH, Chou MY, Li LJ (2014). Ultrahigh-gain photodetectors based on atomically thin graphene-MoS 2 heterostructures. Sci Rep, 4: 3826. CrossRef Zhang W, Chuu CP, Huang JK, Chen CH, Tsai ML, Chang YH, Liang CT, Chen YZ, Chueh YL, He JH, Chou MY, Li LJ (2014). Ultrahigh-gain photodetectors based on atomically thin graphene-MoS 2 heterostructures. Sci Rep, 4: 3826. CrossRef
65.
go back to reference Luo W, Cao Y, Hu P, Cai K, Feng Q, Yan F, Yan T, Zhang X, Wang K (2015). Gate tuning of high-performance InSe-based photodetectors using graphene electrodes. Adv Optical Mater, 3: 1418–1423. CrossRef Luo W, Cao Y, Hu P, Cai K, Feng Q, Yan F, Yan T, Zhang X, Wang K (2015). Gate tuning of high-performance InSe-based photodetectors using graphene electrodes. Adv Optical Mater, 3: 1418–1423. CrossRef
66.
go back to reference Liu Y, Shivananju BN, Wang Y, Zhang Y, Yu W, Xiao S, Sun T, Ma W, Mu H, Lin S, Zhang H (2017). Highly efficient and air stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure. ACS Appl Mater Interfaces, 9(41): 36137–36145. CrossRef Liu Y, Shivananju BN, Wang Y, Zhang Y, Yu W, Xiao S, Sun T, Ma W, Mu H, Lin S, Zhang H (2017). Highly efficient and air stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure. ACS Appl Mater Interfaces, 9(41): 36137–36145. CrossRef
67.
go back to reference Li H, Li X, Park JH, Tao L, Kim KK, Lee YH, Xu JB (2019). Restoring the photovoltaic effect in graphene-based van der Waals heterojunctions towards self-powered high-detectivity photodetectors. Nano Energy, 57: 214–221. CrossRef Li H, Li X, Park JH, Tao L, Kim KK, Lee YH, Xu JB (2019). Restoring the photovoltaic effect in graphene-based van der Waals heterojunctions towards self-powered high-detectivity photodetectors. Nano Energy, 57: 214–221. CrossRef
68.
go back to reference Yu WJ, Liu Y, Zhou H, Yin A, Li Z, Huang Y, Duan XF (2013). Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat Nanotechnol, 8(12): 952–958. CrossRef Yu WJ, Liu Y, Zhou H, Yin A, Li Z, Huang Y, Duan XF (2013). Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat Nanotechnol, 8(12): 952–958. CrossRef
69.
go back to reference Li A, Chen Q, Wang P, Gan Y, Qi T, Wang P, Tang F, Wu JZ, Chen R, Zhang L, Gong Y (2019). Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe/graphene/SnS p-g-n junctions. Adv Mater, 31(6): 1805656–1805664. CrossRef Li A, Chen Q, Wang P, Gan Y, Qi T, Wang P, Tang F, Wu JZ, Chen R, Zhang L, Gong Y (2019). Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe/graphene/SnS p-g-n junctions. Adv Mater, 31(6): 1805656–1805664. CrossRef
70.
go back to reference Luo Q, Wu RG, Ma LT, Wang CH, Liu H, Lin H, Wang N, Chen Y, Guo ZH (2021). Recent advances in carbon nanotube utilizations in perovskite solar cells. Adv Funct Mater, 31(6): 2004765. CrossRef Luo Q, Wu RG, Ma LT, Wang CH, Liu H, Lin H, Wang N, Chen Y, Guo ZH (2021). Recent advances in carbon nanotube utilizations in perovskite solar cells. Adv Funct Mater, 31(6): 2004765. CrossRef
71.
go back to reference Singh R, Singh P K, Bhattacharya B, Rhee HW (2019). Review of current progress in inorganic hole-transport materials for perovskite solar cells. Appl Mater Today, 14: 175–200. CrossRef Singh R, Singh P K, Bhattacharya B, Rhee HW (2019). Review of current progress in inorganic hole-transport materials for perovskite solar cells. Appl Mater Today, 14: 175–200. CrossRef
72.
go back to reference Wang Y, Zhao H, Mei Y, Liu H, Wang S, Li X (2018). Carbon nanotube bridging method for hole transport layer-free paintable carbon-based perovskite solar cells. ACS Appl Mater Interfaces, 11(1): 916–923. CrossRef Wang Y, Zhao H, Mei Y, Liu H, Wang S, Li X (2018). Carbon nanotube bridging method for hole transport layer-free paintable carbon-based perovskite solar cells. ACS Appl Mater Interfaces, 11(1): 916–923. CrossRef
73.
go back to reference Tune DD, Flavel BS (2018). Advances in carbon nanotube–silicon hetero-junction solar cells. Adv Energy Mater, 8(15): 1703241. CrossRef Tune DD, Flavel BS (2018). Advances in carbon nanotube–silicon hetero-junction solar cells. Adv Energy Mater, 8(15): 1703241. CrossRef
74.
go back to reference Cui K, Anisimov AS, Chiba T, Fujii S, Kataura H, Nasibulin AG, Chiashi S, Kauppinen EI, Maruyama S (2014). Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films. J Mater Chem A, 2: 11311–11318. CrossRef Cui K, Anisimov AS, Chiba T, Fujii S, Kataura H, Nasibulin AG, Chiashi S, Kauppinen EI, Maruyama S (2014). Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films. J Mater Chem A, 2: 11311–11318. CrossRef
75.
go back to reference Tune DD, Mallik N, Fornasier H, Flavel BS (2020). Breakthrough carbon nanotube-silicon heterojunction solar cells. Adv Energy Mater, 10(1): 1903261. CrossRef Tune DD, Mallik N, Fornasier H, Flavel BS (2020). Breakthrough carbon nanotube-silicon heterojunction solar cells. Adv Energy Mater, 10(1): 1903261. CrossRef
76.
go back to reference Chen J, Tune DD, Ge K, Li H, Flavel BS (2020). Front and back-junction carbon nanotube-silicon solar cells with an industrial architecture. Adv Funct Mater, 30(17): 2000484. CrossRef Chen J, Tune DD, Ge K, Li H, Flavel BS (2020). Front and back-junction carbon nanotube-silicon solar cells with an industrial architecture. Adv Funct Mater, 30(17): 2000484. CrossRef
77.
go back to reference Meyyappan M (2016). Carbon nanotube-based chemical sensors. Small, 12(16): 2118–2129. CrossRef Meyyappan M (2016). Carbon nanotube-based chemical sensors. Small, 12(16): 2118–2129. CrossRef
78.
go back to reference Sacco L, Forel S, Florea I, Cojocaru CS (2020). Ultra-sensitive NO 2 gas sensors based on single-wall carbon nanotube field effect transistors: Monitoring from ppm to ppb level. Carbon, 157: 631–639. CrossRef Sacco L, Forel S, Florea I, Cojocaru CS (2020). Ultra-sensitive NO 2 gas sensors based on single-wall carbon nanotube field effect transistors: Monitoring from ppm to ppb level. Carbon, 157: 631–639. CrossRef
79.
go back to reference Zhou S, Xiao M, Liu F, He J, Lin Y, Zhang Z (2021). Sub-10 parts per billion detection of hydrogen with floating gate transistors built on semiconducting carbon nanotube film. Carbon, 180: 41–47. CrossRef Zhou S, Xiao M, Liu F, He J, Lin Y, Zhang Z (2021). Sub-10 parts per billion detection of hydrogen with floating gate transistors built on semiconducting carbon nanotube film. Carbon, 180: 41–47. CrossRef
80.
go back to reference Schroeder V, Savagatrup S, He M, Lin S, Swager TM (2018). Carbon nanotube chemical sensors. Chem Rev, 119(1): 599–663. CrossRef Schroeder V, Savagatrup S, He M, Lin S, Swager TM (2018). Carbon nanotube chemical sensors. Chem Rev, 119(1): 599–663. CrossRef
81.
go back to reference Forel S, Sacco L, Castan A, Florea I, Cojocaru CS (2021). Simple and rapid gas sensing using a single-walled carbon nanotube field-effect transistor-based logic inverter. Nanoscale Adv, 2021, 3, 1582–1587. CrossRef Forel S, Sacco L, Castan A, Florea I, Cojocaru CS (2021). Simple and rapid gas sensing using a single-walled carbon nanotube field-effect transistor-based logic inverter. Nanoscale Adv, 2021, 3, 1582–1587. CrossRef
82.
go back to reference Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007). Detection of individual gas molecules adsorbed on graphene. Nat Mater. 6(9): 652–655. CrossRef Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007). Detection of individual gas molecules adsorbed on graphene. Nat Mater. 6(9): 652–655. CrossRef
83.
go back to reference Liu Y, Dong X, Chen P (2012). Biological and chemical sensors based on graphene materials. Chem Soc Rev, 41(6): 2283–2307. CrossRef Liu Y, Dong X, Chen P (2012). Biological and chemical sensors based on graphene materials. Chem Soc Rev, 41(6): 2283–2307. CrossRef
84.
go back to reference Zhao J, Buldum A, Han J, Lu JP (2000). First-principles study of Li-intercalated carbon nanotube ropes. Phys Rev Lett, 85(8): 1706. CrossRef Zhao J, Buldum A, Han J, Lu JP (2000). First-principles study of Li-intercalated carbon nanotube ropes. Phys Rev Lett, 85(8): 1706. CrossRef
85.
go back to reference Meunier V, Kephart J, Roland C, Bernholc J (2002). Ab initio investigations of lithium diffusion in carbon nanotube systems. Phys Rev Lett, 88(7): 075506. Meunier V, Kephart J, Roland C, Bernholc J (2002). Ab initio investigations of lithium diffusion in carbon nanotube systems. Phys Rev Lett, 88(7): 075506.
86.
go back to reference Noerochim L, Wang JZ, Chou SL, Wexler D, Liu HK (2012). Free-standing single-walled carbon nanotube/SnO 2 anode paper for flexible lithium-ion batteries. Carbon, 50(3): 1289–1297. CrossRef Noerochim L, Wang JZ, Chou SL, Wexler D, Liu HK (2012). Free-standing single-walled carbon nanotube/SnO 2 anode paper for flexible lithium-ion batteries. Carbon, 50(3): 1289–1297. CrossRef
87.
go back to reference Bulusheva LG, Okotrub AV, Kurenya AG, Zhang H, Zhang H, Chen X, Song H (2011). Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon, 49(12): 4013–4023. CrossRef Bulusheva LG, Okotrub AV, Kurenya AG, Zhang H, Zhang H, Chen X, Song H (2011). Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon, 49(12): 4013–4023. CrossRef
88.
go back to reference Wu YP, Rahm E, Holze R (2003). Carbon anode materials for lithium ion batteries. J Power Sources, 114(2): 228–236. CrossRef Wu YP, Rahm E, Holze R (2003). Carbon anode materials for lithium ion batteries. J Power Sources, 114(2): 228–236. CrossRef
89.
go back to reference Kucinskis G, Bajars G, Kleperis J (2013). Graphene in lithium ion battery cathode materials: A review. J Power Sources, 240: 66–79. CrossRef Kucinskis G, Bajars G, Kleperis J (2013). Graphene in lithium ion battery cathode materials: A review. J Power Sources, 240: 66–79. CrossRef
90.
go back to reference Tang J, Zhong X, Li H, Li Y, Pan F, Xu B (2019). In-situ and selectively laser reduced graphene oxide sheets as excellent conductive additive for high rate capability LiFePO 4 lithium ion batteries. J Power Sources, 412: 677–682. CrossRef Tang J, Zhong X, Li H, Li Y, Pan F, Xu B (2019). In-situ and selectively laser reduced graphene oxide sheets as excellent conductive additive for high rate capability LiFePO 4 lithium ion batteries. J Power Sources, 412: 677–682. CrossRef
91.
go back to reference Wang GP, Zhang QT, Yu ZL, Qu MZ (2008). The effect of different kinds of nano-carbon conductive additives in LIB on the resistance and electrochemical behavior of the LiCoO 2 composite cathodes. Solid State Ionics, 179(7–8): 263–268. Wang GP, Zhang QT, Yu ZL, Qu MZ (2008). The effect of different kinds of nano-carbon conductive additives in LIB on the resistance and electrochemical behavior of the LiCoO 2 composite cathodes. Solid State Ionics, 179(7–8): 263–268.
92.
go back to reference Xiao Q, Fan Y, Wang X, Susantyoko RA, Zhang Q (2014). A multilayer Si/CNT coaxial nanofiber LIB anode with a high areal capacity. Energy Environ Sci, 7(2): 655–661. CrossRef Xiao Q, Fan Y, Wang X, Susantyoko RA, Zhang Q (2014). A multilayer Si/CNT coaxial nanofiber LIB anode with a high areal capacity. Energy Environ Sci, 7(2): 655–661. CrossRef
93.
go back to reference Wang S, Liao J, Wu M, Xu Z, Gong F, Chen C, Wang Y, Yan X (2017). High rate and long cycle life of a CNT/rGO/Si nanoparticle composite anode for lithium‐ion batteries. Particle Particle Syst Characteriz, 34(10): 1700141. CrossRef Wang S, Liao J, Wu M, Xu Z, Gong F, Chen C, Wang Y, Yan X (2017). High rate and long cycle life of a CNT/rGO/Si nanoparticle composite anode for lithium‐ion batteries. Particle Particle Syst Characteriz, 34(10): 1700141. CrossRef
94.
go back to reference Cai H, Han K, Jiang H, Wang J, Liu H (2017). Self-standing silicon-carbon nanotube/graphene by a scalable in situ approach from low-cost Al-Si alloy powder for lithium ion batteries. J Phys Chem Solid, 109: 9–17. CrossRef Cai H, Han K, Jiang H, Wang J, Liu H (2017). Self-standing silicon-carbon nanotube/graphene by a scalable in situ approach from low-cost Al-Si alloy powder for lithium ion batteries. J Phys Chem Solid, 109: 9–17. CrossRef
95.
go back to reference Lee WJ, Maiti UN, Lee JM, Lim J, Han TH, Kim SO (2014). Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. Chem Commun, 50(52): 6818–6830. CrossRef Lee WJ, Maiti UN, Lee JM, Lim J, Han TH, Kim SO (2014). Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. Chem Commun, 50(52): 6818–6830. CrossRef
96.
go back to reference Meng X, Riha SC, Libera JA, Wu Q, Wang HH, Martinson AB, Elam JW (2015). Tunable core-shell single-walled carbon nanotube-Cu 2S networked nanocomposites as high-performance cathodes for lithium-ion batteries. J Power Sources, 280: 621–629. CrossRef Meng X, Riha SC, Libera JA, Wu Q, Wang HH, Martinson AB, Elam JW (2015). Tunable core-shell single-walled carbon nanotube-Cu 2S networked nanocomposites as high-performance cathodes for lithium-ion batteries. J Power Sources, 280: 621–629. CrossRef
97.
go back to reference Tamate R, Saruwatari A, Nakanishi A, Matsumae Y, Ueno K, Dokko K, Watanabe M (2019). Excellent dispersibility of single-walled carbon nanotubes in highly concentrated electrolytes and application to gel electrode for Li-S batteries. Electrochem Commun, 109: 106598. Tamate R, Saruwatari A, Nakanishi A, Matsumae Y, Ueno K, Dokko K, Watanabe M (2019). Excellent dispersibility of single-walled carbon nanotubes in highly concentrated electrolytes and application to gel electrode for Li-S batteries. Electrochem Commun, 109: 106598.
98.
go back to reference Cui LF, Hu L, Choi JW, Cui Y (2010). Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. ACS Nano, 4(7): 3671–3678. CrossRef Cui LF, Hu L, Choi JW, Cui Y (2010). Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. ACS Nano, 4(7): 3671–3678. CrossRef
99.
go back to reference Caballero Á, Morales J (2012). Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted? Nanoscale, 4(6): 2083–2092. CrossRef Caballero Á, Morales J (2012). Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted? Nanoscale, 4(6): 2083–2092. CrossRef
100.
go back to reference Kaempgen M, Chan C K, Ma J, Cui Y, Gruner G (2009). Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett, 9(5): 1872–1876. CrossRef Kaempgen M, Chan C K, Ma J, Cui Y, Gruner G (2009). Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett, 9(5): 1872–1876. CrossRef
101.
go back to reference Niu Z, Dong H, Zhu B, Li J, Hng HH, Zhou WY, Chen XD, Xie SS (2013). Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv Mater, 25(7): 1058–1064. CrossRef Niu Z, Dong H, Zhu B, Li J, Hng HH, Zhou WY, Chen XD, Xie SS (2013). Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv Mater, 25(7): 1058–1064. CrossRef
102.
go back to reference Niu Z, Zhou W, Chen J, Feng G, Li H, Ma WJ, Li JZ, Dong HB, Ren Y, Zhao D, Xie SS (2011). Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy Environ Sci, 4(4): 1440–1446. CrossRef Niu Z, Zhou W, Chen J, Feng G, Li H, Ma WJ, Li JZ, Dong HB, Ren Y, Zhao D, Xie SS (2011). Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy Environ Sci, 4(4): 1440–1446. CrossRef
103.
go back to reference Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011). Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys, 13(39): 17615–17624. CrossRef Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011). Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys, 13(39): 17615–17624. CrossRef
104.
go back to reference Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH (2012). Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J Mater Chem, 2012, 22(3): 767–784. Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH (2012). Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J Mater Chem, 2012, 22(3): 767–784.
105.
go back to reference Gupta V, Miura N (2006). Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochimica Acta, 52(4): 1721–1726. CrossRef Gupta V, Miura N (2006). Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochimica Acta, 52(4): 1721–1726. CrossRef
106.
go back to reference Chen PC, Shen GZ, Shi Y, Chen HT, Zhou CW (2010). Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano, 4(8): 4403–4411. CrossRef Chen PC, Shen GZ, Shi Y, Chen HT, Zhou CW (2010). Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano, 4(8): 4403–4411. CrossRef
107.
go back to reference Zhi M, Xiang CC, Li JT, Li M, Wu NQ (2013). Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale, 5(1): 72–88. CrossRef Zhi M, Xiang CC, Li JT, Li M, Wu NQ (2013). Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale, 5(1): 72–88. CrossRef
108.
go back to reference Antiohos D, Folkes G, Sherrell P, Ashraf S, Wallace GG, Aitchison P, Harris AT, Chen J, Minett AI (2011). Compositional effects of PEDOT-PSS/single walled carbon nanotube films on supercapacitor device performance. J Mater Chem, 21(40): 15987–15994. CrossRef Antiohos D, Folkes G, Sherrell P, Ashraf S, Wallace GG, Aitchison P, Harris AT, Chen J, Minett AI (2011). Compositional effects of PEDOT-PSS/single walled carbon nanotube films on supercapacitor device performance. J Mater Chem, 21(40): 15987–15994. CrossRef
109.
go back to reference Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F (2019). Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon, 141: 467–480. CrossRef Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F (2019). Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon, 141: 467–480. CrossRef
110.
go back to reference Xu J, Fisher TS (2006). Enhancement of thermal interface materials with carbon nanotube arrays. Inter J Heat Mass Transfer, 49(9–10): 1658–1666. CrossRef Xu J, Fisher TS (2006). Enhancement of thermal interface materials with carbon nanotube arrays. Inter J Heat Mass Transfer, 49(9–10): 1658–1666. CrossRef
111.
go back to reference Shaikh S, Li L, Lafdi K, Huie J (2007). Thermal conductivity of an aligned carbon nanotube array. Carbon, 45(13): 2608–2613. CrossRef Shaikh S, Li L, Lafdi K, Huie J (2007). Thermal conductivity of an aligned carbon nanotube array. Carbon, 45(13): 2608–2613. CrossRef
112.
go back to reference Zhang K, Chai Y, Yuen MMF, Xiao DGW, Chan PCH (2008). Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling. Nanotechnology, 19(21): 215706. Zhang K, Chai Y, Yuen MMF, Xiao DGW, Chan PCH (2008). Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling. Nanotechnology, 19(21): 215706.
113.
go back to reference Qiu L, Guo P, Kong Q, Tan CW, Liang K, Wei J, Tey JN, Feng YH, Zhang XX, Tay BK (2019). Coating-boosted interfacial thermal transport for carbon nanotube array nano-thermal interface materials. Carbon, 145: 725–733. CrossRef Qiu L, Guo P, Kong Q, Tan CW, Liang K, Wei J, Tey JN, Feng YH, Zhang XX, Tay BK (2019). Coating-boosted interfacial thermal transport for carbon nanotube array nano-thermal interface materials. Carbon, 145: 725–733. CrossRef
114.
go back to reference Kwak SY, Lew TTS, Sweeney CJ, Koman VB, Wong MH, Bohmert-Tatarev K, Snell KD, Seo JS, Chua NH, Strano MS (2019). Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat Nanotechnol, 14(5): 447–455. CrossRef Kwak SY, Lew TTS, Sweeney CJ, Koman VB, Wong MH, Bohmert-Tatarev K, Snell KD, Seo JS, Chua NH, Strano MS (2019). Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat Nanotechnol, 14(5): 447–455. CrossRef
115.
go back to reference Demirer G S, Zhang H, Goh NS, Pinals RL, Chang R, Landry MP (2020). Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Sci Adv, 6(26): eaaz0495. Demirer G S, Zhang H, Goh NS, Pinals RL, Chang R, Landry MP (2020). Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Sci Adv, 6(26): eaaz0495.
116.
go back to reference Deshmukh MA, Jeon JY, Ha TJ (2020). Carbon nanotubes: An effective platform for biomedical electronics. Biosens Bioelectron, 150: 111919. Deshmukh MA, Jeon JY, Ha TJ (2020). Carbon nanotubes: An effective platform for biomedical electronics. Biosens Bioelectron, 150: 111919.
117.
go back to reference Zhu Z (2017). An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett, 9(3): 1–24. CrossRef Zhu Z (2017). An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett, 9(3): 1–24. CrossRef
118.
go back to reference Dasari Shareena TP, McShan D, Dasmahapatra AK, Tchounwou PB (2018). A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett, 10: 53. CrossRef Dasari Shareena TP, McShan D, Dasmahapatra AK, Tchounwou PB (2018). A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett, 10: 53. CrossRef
119.
go back to reference Reina G, González-Domínguez JM, Criado A, Vázquez E, Bianco A, Prato M (2017). Promises, facts and challenges for graphene in biomedical applications. Chem Soc Rev, 46(15): 4400–4416. CrossRef Reina G, González-Domínguez JM, Criado A, Vázquez E, Bianco A, Prato M (2017). Promises, facts and challenges for graphene in biomedical applications. Chem Soc Rev, 46(15): 4400–4416. CrossRef
120.
go back to reference Cheng C, Li S, Thomas A, Kotov NA, Haag R (2017). Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications. Chem Rev, 117(3): 1826–1914. CrossRef Cheng C, Li S, Thomas A, Kotov NA, Haag R (2017). Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications. Chem Rev, 117(3): 1826–1914. CrossRef
121.
go back to reference Fadeel B, Bussy C, Merino S, Vázquez E, Flahaut E, Mouchet F, Evariste L, Gauthier L, Koivisto AJ, Vogel U, Martín C, Delogu LG, Buerki-Thurnherr T, Wick P, Beloin-Saint-Pierre D, HischierR, Pelin M, Carniel FC, Tretiach M, Cesca F, Benfenati F, Scaini D, Ballerini L, Kostarelos K, Prato M, Bianco A (2018). Safety assessment of graphene-based materials: focus on human health and the environment. ACS Nano, 12(11): 10582–10620. CrossRef Fadeel B, Bussy C, Merino S, Vázquez E, Flahaut E, Mouchet F, Evariste L, Gauthier L, Koivisto AJ, Vogel U, Martín C, Delogu LG, Buerki-Thurnherr T, Wick P, Beloin-Saint-Pierre D, HischierR, Pelin M, Carniel FC, Tretiach M, Cesca F, Benfenati F, Scaini D, Ballerini L, Kostarelos K, Prato M, Bianco A (2018). Safety assessment of graphene-based materials: focus on human health and the environment. ACS Nano, 12(11): 10582–10620. CrossRef
Metadata
Title
Introduction of Carbon Nanostructures
Author
Yanjie Su
Copyright Year
2022
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-5497-8_1