Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Journal of Electronic Materials 12/2023

18-09-2023 | Original Research Article

Introduction Rates of Electrically Active Radiation Defects in Proton Irradiated n-Type and p-Type Si Monocrystals

Authors: Vachagan Harutyunyan, Aram Sahakyan, Andranik Manukyan, Bagrat Grigoryan, Hakob Davtyan, Ashot Vardanyan, Christopher J. Rhodes, Vika Arzumanyan

Published in: Journal of Electronic Materials | Issue 12/2023

Log in

Abstract

The introduction rates of electrically active radiation defects \(\Delta N_{{{\text{def}}}} /\Delta \Phi\) were studied as a function of 15.5 MeV energy proton radiation fluence \(\left( \Phi \right)\) in n-type and p-type Si semiconductor crystals. The concentration of electrically active radiation defects \( N_{{{\text{def}}}}\) was determined as the difference between the charge carrier concentration before \(n_{0}\) and after \(n\left( \Phi \right) \) irradiation, at room temperature. It was demonstrated that the concentration of electrically active radiation defects in silicon crystals produced by proton irradiation can be described by an empirical exponential function. The experimental results show that the introduction rate of electrically active radiation defects depends on the initial sample parameters, and during the initial phase of irradiation by protons it is significantly higher than that for 3.5 MeV energy electron irradiation. It was shown that samples with a low introduction rate of radiation defects are more resistant to the effects of particle irradiation. The charge carrier mobility in both n-type and p-type silicon crystals changes slightly as a result of proton irradiation, in contrast to the significant decreases observed under conditions of electron irradiation. In the case of proton irradiation, the resistivity of n-type and p-type silicon crystals increases exponentially with the level of radiation fluence.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. Siffert, and E.F. Krimmel, Silicon: Evolution and Future of a Technology, 1st ed., (Berlin, Heidelberg: Springer, 2004). CrossRef P. Siffert, and E.F. Krimmel, Silicon: Evolution and Future of a Technology, 1st ed., (Berlin, Heidelberg: Springer, 2004). CrossRef
14.
go back to reference C. Leroy, and P.-G. Rancoita, Particle interaction and displacement damage in silicon devices operated in radiation environments. Rep. Prog. Phys. 70, 493 (2007). CrossRef C. Leroy, and P.-G. Rancoita, Particle interaction and displacement damage in silicon devices operated in radiation environments. Rep. Prog. Phys. 70, 493 (2007). CrossRef
15.
go back to reference M. Kuhnke, E. Fretwurst, and G. Lindstroem, Defect generation in crystalline silicon irradiated with high energy particles. Nucl. Instrum. Methods Phys. Res. Sect. B 186, 144 (2002). CrossRef M. Kuhnke, E. Fretwurst, and G. Lindstroem, Defect generation in crystalline silicon irradiated with high energy particles. Nucl. Instrum. Methods Phys. Res. Sect. B 186, 144 (2002). CrossRef
16.
go back to reference I. Smirnov, I. Dyachkova, and E. Novoselova, High resolution X-ray diffraction study of proton irradiated silicon crystals. Mod. Electron. Mater. 2, 29 (2016). CrossRef I. Smirnov, I. Dyachkova, and E. Novoselova, High resolution X-ray diffraction study of proton irradiated silicon crystals. Mod. Electron. Mater. 2, 29 (2016). CrossRef
17.
go back to reference Y. Funtikov, L. Dubov, Y. Shtotsky, and S. Stepanov, Radiation-induced defects in Si after high dose proton irradiation. Defect Diffus. Forum 373, 209 (2017). CrossRef Y. Funtikov, L. Dubov, Y. Shtotsky, and S. Stepanov, Radiation-induced defects in Si after high dose proton irradiation. Defect Diffus. Forum 373, 209 (2017). CrossRef
19.
go back to reference T. Pagava and L. Chkhartishvili, Radiation defects nano-scale inhomogeneous distribution influence on apparent hall mobility in silicon. Nano Res Appl. 03(03) (2017). T. Pagava and L. Chkhartishvili, Radiation defects nano-scale inhomogeneous distribution influence on apparent hall mobility in silicon. Nano Res Appl. 03(03) (2017).
20.
go back to reference N. Bogatov, L. Grigoryan, A. Klenevsky, M. Kovalenko, and I. Nesterenko, Modelling of disordering regions in proton-irradiated silicon. J. Phys. Conf. Ser. 1553, 012015 (2020). CrossRef N. Bogatov, L. Grigoryan, A. Klenevsky, M. Kovalenko, and I. Nesterenko, Modelling of disordering regions in proton-irradiated silicon. J. Phys. Conf. Ser. 1553, 012015 (2020). CrossRef
21.
go back to reference H. Yeritsyan, A. Sahakyan, N. Grigoryan, V. Harutunyan, V. Sahakyan, and A. Khachatryan, Clusters of radiation defects in silicon crystals. J. Mod. Phys. 6, 1270 (2015). CrossRef H. Yeritsyan, A. Sahakyan, N. Grigoryan, V. Harutunyan, V. Sahakyan, and A. Khachatryan, Clusters of radiation defects in silicon crystals. J. Mod. Phys. 6, 1270 (2015). CrossRef
22.
go back to reference P.F. Lugakov, and I.M. Filippov, Radiation defect clusters in electron-irradiated silicon. Radiat. Eff. 90, 297 (1985). CrossRef P.F. Lugakov, and I.M. Filippov, Radiation defect clusters in electron-irradiated silicon. Radiat. Eff. 90, 297 (1985). CrossRef
24.
25.
go back to reference N. Bogatov, L. Grigoryan, A. Klenevsky, M. Kovalenko, and I. Nesterenko, Formation of primary radiation defects in a non-equilibrium silicon structure by electron irradiation. J. Phys. Conf. Ser. 1679, 032077 (2020). CrossRef N. Bogatov, L. Grigoryan, A. Klenevsky, M. Kovalenko, and I. Nesterenko, Formation of primary radiation defects in a non-equilibrium silicon structure by electron irradiation. J. Phys. Conf. Ser. 1679, 032077 (2020). CrossRef
Metadata
Title
Introduction Rates of Electrically Active Radiation Defects in Proton Irradiated n-Type and p-Type Si Monocrystals
Authors
Vachagan Harutyunyan
Aram Sahakyan
Andranik Manukyan
Bagrat Grigoryan
Hakob Davtyan
Ashot Vardanyan
Christopher J. Rhodes
Vika Arzumanyan
Publication date
18-09-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 12/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10700-7

Other articles of this Issue 12/2023

Journal of Electronic Materials 12/2023 Go to the issue