Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

1. Introduction to Adaptive and Robust Active Vibration Control

Authors : Ioan Doré Landau, Tudor-Bogdan Airimitoaie, Abraham Castellanos-Silva, Aurelian Constantinescu

Published in: Adaptive and Robust Active Vibration Control

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The reasons for doing active vibration control are emphasized as well as the principles of the basic approaches. Feedback and feedforward vibration compensation approaches are discussed from a unified point of view. The high performance required in the presence of variability of the vibration characteristics leads to the use of robust and adaptive designs for active vibration control systems. The challenges related to these approaches are described.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In these two examples the actuators are driven by a feedback controller, but in other cases the actuator can be driven by a feedforward compensator.
 
2
Light mechanical structures are characterized by multiple low damped vibration modes. These modes have to be damped since on the one hand they can become a source of vibration and on the other environmental disturbances can lead to inadmissible movements of the structure.
 
3
Both the controller and the plant to be controlled are stable.
 
4
The modulus margin is the minimum distance between the open-loop transfer function hodograph and the Nyquist point and is equal to the inverse of the maximum of the modulus of the sensitivity function [6].
 
5
For example, narrow-band disturbances can be rejected by feedback up to a certain number while keeping an acceptable profile for the output sensitivity function (at least 3 or 4—see [7] and Chap. 13). Sufficiently “narrow” finite-band disturbances can also be handled by feedback alone.
 
6
The source is located upstream with respect to the location where the residual force (acceleration) or noise is measured.
 
7
The resulting controller may be of high order and this raises the problem of controller order reduction, which will be discussed in Chap. 9.
 
8
The input sensitivity function is the transfer function between the disturbance p(t) and the control input u(t) (see Fig. 1.4).
 
9
This will be illustrated on the experimental platform that will be presented in Sect. 2.​3.
 
Literature
2.
go back to reference Li S, Li J, Mo Y, Zhao R (2014) Composite multi-modal vibration control for a stiffened plate using non-collocated acceleration sensor and piezoelectric actuator. Smart Mater Struct 23(1):1–13CrossRef Li S, Li J, Mo Y, Zhao R (2014) Composite multi-modal vibration control for a stiffened plate using non-collocated acceleration sensor and piezoelectric actuator. Smart Mater Struct 23(1):1–13CrossRef
3.
go back to reference Fuller C, Elliott S, Nelson P (1999) Active control of vibration. Academic Press, Cambridge Fuller C, Elliott S, Nelson P (1999) Active control of vibration. Academic Press, Cambridge
4.
go back to reference Elliott S (2001) Signal processing for active control. Academic Press, San Diego, California Elliott S (2001) Signal processing for active control. Academic Press, San Diego, California
5.
go back to reference Preumont A (2011) Vibration control of active structures—an introduction. Springer, Heidelberg Preumont A (2011) Vibration control of active structures—an introduction. Springer, Heidelberg
6.
go back to reference Landau I, Zito G (2005) Digital control systems—design, identification and implementation. Springer, London Landau I, Zito G (2005) Digital control systems—design, identification and implementation. Springer, London
7.
go back to reference Landau ID, Silva AC, Airimitoaie TB, Buche G, Noé M (2013) Benchmark on adaptive regulation—rejection of unknown/time-varying multiple narrow band disturbances. Eur J Control 19(4):237–252. doi:10.1016/j.ejcon.2013.05.007 Landau ID, Silva AC, Airimitoaie TB, Buche G, Noé M (2013) Benchmark on adaptive regulation—rejection of unknown/time-varying multiple narrow band disturbances. Eur J Control 19(4):237–252. doi:10.​1016/​j.​ejcon.​2013.​05.​007
8.
go back to reference Alma M, Martinez J, Landau I, Buche G (2012) Design and tuning of reduced order H\(_\infty \) feedforward compensators for active vibration control. IEEE Trans Control Syst Technol 20(2):554–561. doi:10.1109/TCST.2011.2119485 Alma M, Martinez J, Landau I, Buche G (2012) Design and tuning of reduced order H\(_\infty \) feedforward compensators for active vibration control. IEEE Trans Control Syst Technol 20(2):554–561. doi:10.​1109/​TCST.​2011.​2119485
9.
go back to reference Rotunno M, de Callafon R (2003) Design of model-based feedforward compensators for vibration compensation in a flexible structure. Internal report, Dept. of Mechanical and Aerospace Engineering. University of California, San Diego Rotunno M, de Callafon R (2003) Design of model-based feedforward compensators for vibration compensation in a flexible structure. Internal report, Dept. of Mechanical and Aerospace Engineering. University of California, San Diego
10.
go back to reference Carmona J, Alvarado V (2000) Active noise control of a duct using robust control theory. IEEE Trans. Control Syst Technol 8(6):930–938CrossRef Carmona J, Alvarado V (2000) Active noise control of a duct using robust control theory. IEEE Trans. Control Syst Technol 8(6):930–938CrossRef
11.
go back to reference Tay TT, Mareels IMY, Moore JB (1997) High performance control. Birkhäuser Boston Tay TT, Mareels IMY, Moore JB (1997) High performance control. Birkhäuser Boston
14.
go back to reference Hu J, Linn J (2000) Feedforward active noise controller design in ducts without independent noise source measurements. IEEE Trans Control Syst Technol 8(3):443–455CrossRef Hu J, Linn J (2000) Feedforward active noise controller design in ducts without independent noise source measurements. IEEE Trans Control Syst Technol 8(3):443–455CrossRef
15.
go back to reference Jacobson C, Johnson CR, Jr, McCormick D, Sethares W (2001) Stability of active noise control algorithms. IEEE Signal Process Lett 8(3):74–76. doi:10.1109/97.905944 Jacobson C, Johnson CR, Jr, McCormick D, Sethares W (2001) Stability of active noise control algorithms. IEEE Signal Process Lett 8(3):74–76. doi:10.​1109/​97.​905944
17.
go back to reference Landau ID, Lozano R, M’Saad M, Karimi A (2011) Adaptive control, 2nd edn. Springer, LondonCrossRefMATH Landau ID, Lozano R, M’Saad M, Karimi A (2011) Adaptive control, 2nd edn. Springer, LondonCrossRefMATH
18.
go back to reference Bodson M, Douglas S (1997) Adaptive algorithms for the rejection of sinusosidal disturbances with unknown frequency. Automatica 33:2213–2221MathSciNetCrossRefMATH Bodson M, Douglas S (1997) Adaptive algorithms for the rejection of sinusosidal disturbances with unknown frequency. Automatica 33:2213–2221MathSciNetCrossRefMATH
19.
go back to reference Benamara F, Kabamba P, Ulsoy A (1999) Adaptive sinusoidal disturbance rejection in linear discrete-time systems—part I: Theory. J Dyn Syst Meas Control 121:648–654 Benamara F, Kabamba P, Ulsoy A (1999) Adaptive sinusoidal disturbance rejection in linear discrete-time systems—part I: Theory. J Dyn Syst Meas Control 121:648–654
20.
go back to reference Valentinotti S (2001) Adaptive rejection of unstable disturbances: Application to a fed-batch fermentation. Thèse de doctorat, École Polytechnique Fédérale de Lausanne Valentinotti S (2001) Adaptive rejection of unstable disturbances: Application to a fed-batch fermentation. Thèse de doctorat, École Polytechnique Fédérale de Lausanne
21.
go back to reference Marino R, Santosuosso G, Tomei P (2003) Robust adaptive compensation of biased sinusoidal disturbances with unknown frequency. Automatica 39:1755–1761MathSciNetCrossRefMATH Marino R, Santosuosso G, Tomei P (2003) Robust adaptive compensation of biased sinusoidal disturbances with unknown frequency. Automatica 39:1755–1761MathSciNetCrossRefMATH
23.
go back to reference Landau I, Constantinescu A, Rey D (2005) Adaptive narrow band disturbance rejection applied to an active suspension—an internal model principle approach. Automatica 41(4):563–574MathSciNetCrossRefMATH Landau I, Constantinescu A, Rey D (2005) Adaptive narrow band disturbance rejection applied to an active suspension—an internal model principle approach. Automatica 41(4):563–574MathSciNetCrossRefMATH
24.
go back to reference Kinney C, Fang H, de Callafon R, Alma M (2011) Robust estimation and automatic controller tuning in vibration control of time varying harmonic disturbances. In: 18th IFAC World Congress, Milano, Italy, pp 5401–5406 Kinney C, Fang H, de Callafon R, Alma M (2011) Robust estimation and automatic controller tuning in vibration control of time varying harmonic disturbances. In: 18th IFAC World Congress, Milano, Italy, pp 5401–5406
25.
go back to reference Aranovskiy S, Freidovich LB (2013) Adaptive compensation of disturbances formed as sums of sinusoidal signals with application to an active vibration control benchmark. Eur J Control 19(4), 253–265. doi:10.1016/j.ejcon.2013.05.008. (Benchmark on adaptive regulation: rejection of unknown/time-varying multiple narrow band disturbances) Aranovskiy S, Freidovich LB (2013) Adaptive compensation of disturbances formed as sums of sinusoidal signals with application to an active vibration control benchmark. Eur J Control 19(4), 253–265. doi:10.​1016/​j.​ejcon.​2013.​05.​008. (Benchmark on adaptive regulation: rejection of unknown/time-varying multiple narrow band disturbances)
26.
go back to reference Chen X, Tomizuka M (2012) A minimum parameter adaptive approach for rejecting multiple narrow-band disturbances with application to hard disk drives. IEEE Trans Control Syst Technol 20(2):408–415. doi:10.1109/TCST.2011.2178025 CrossRef Chen X, Tomizuka M (2012) A minimum parameter adaptive approach for rejecting multiple narrow-band disturbances with application to hard disk drives. IEEE Trans Control Syst Technol 20(2):408–415. doi:10.​1109/​TCST.​2011.​2178025 CrossRef
27.
go back to reference Emedi Z, Karimi A (2012) Fixed-order LPV controller design for rejection of a sinusoidal disturbance with time-varying frequency. In: 2012 IEEE multi-conference on systems and control, Dubrovnik Emedi Z, Karimi A (2012) Fixed-order LPV controller design for rejection of a sinusoidal disturbance with time-varying frequency. In: 2012 IEEE multi-conference on systems and control, Dubrovnik
28.
go back to reference Marino R, Santosuosso G, Tomei P (2008) Output feedback stabilization of linear systems with unknown additive output sinusoidal disturbances. Eur J Control 14(2):131–148MathSciNetCrossRef Marino R, Santosuosso G, Tomei P (2008) Output feedback stabilization of linear systems with unknown additive output sinusoidal disturbances. Eur J Control 14(2):131–148MathSciNetCrossRef
29.
31.
go back to reference Landau ID, Airimitoaie TB, Castellanos SA (2015) Adaptive attenuation of unknown and time-varying narrow band and broadband disturbances. Int J Adapt Control Signal Process 29(11):1367–1390 Landau ID, Airimitoaie TB, Castellanos SA (2015) Adaptive attenuation of unknown and time-varying narrow band and broadband disturbances. Int J Adapt Control Signal Process 29(11):1367–1390
33.
go back to reference Alkhatib R, Golnaraghi M (2003) Active structural vibration control: a review. Shock Vib Dig 35(5):367CrossRef Alkhatib R, Golnaraghi M (2003) Active structural vibration control: a review. Shock Vib Dig 35(5):367CrossRef
34.
go back to reference Fuller C, Von Flotow A (1995) Active control of sound and vibration. IEEE Control Syst 15(6):9–19CrossRef Fuller C, Von Flotow A (1995) Active control of sound and vibration. IEEE Control Syst 15(6):9–19CrossRef
35.
go back to reference Zhou S, Shi J (2001) Active balancing and vibration control of rotating machinery: a survey. Shock Vib Dig 33(5):361–371CrossRef Zhou S, Shi J (2001) Active balancing and vibration control of rotating machinery: a survey. Shock Vib Dig 33(5):361–371CrossRef
36.
go back to reference Preumont A, François A, Bossens F, Abu-Hanieh A (2002) Force feedback versus acceleration feedback in active vibration isolation. J Sound Vib 257(4):605–613CrossRef Preumont A, François A, Bossens F, Abu-Hanieh A (2002) Force feedback versus acceleration feedback in active vibration isolation. J Sound Vib 257(4):605–613CrossRef
37.
go back to reference Martinez JJ, Alma M (2012) Improving playability of blu-ray disc drives by using adaptive suppression of repetitive disturbances. Automatica 48(4):638–644MathSciNetCrossRefMATH Martinez JJ, Alma M (2012) Improving playability of blu-ray disc drives by using adaptive suppression of repetitive disturbances. Automatica 48(4):638–644MathSciNetCrossRefMATH
38.
go back to reference Taheri B (2013) Real-time pathological tremor identification and suppression. Phd thesis, Southern Methodist University Taheri B (2013) Real-time pathological tremor identification and suppression. Phd thesis, Southern Methodist University
41.
go back to reference Bohn C, Cortabarria A, Härtel V, Kowalczyk K (2004) Active control of engine-induced vibrations in automotive vehicles using disturbance observer gain scheduling. Control Eng Pract 12(8):1029–1039CrossRef Bohn C, Cortabarria A, Härtel V, Kowalczyk K (2004) Active control of engine-induced vibrations in automotive vehicles using disturbance observer gain scheduling. Control Eng Pract 12(8):1029–1039CrossRef
42.
go back to reference Karkosch H, Svaricek F, Shoureshi R, Vance J (1999) Automotive applications of active vibration control. In: Proceedings of the European control conference Karkosch H, Svaricek F, Shoureshi R, Vance J (1999) Automotive applications of active vibration control. In: Proceedings of the European control conference
43.
go back to reference Li Y, Horowitz R (2001) Active suspension vibration control with dual stage actuators in hard disk drives. In: Proceedings of the American control conference, 2001, vol 4, pp 2786–2791. IEEE, New York Li Y, Horowitz R (2001) Active suspension vibration control with dual stage actuators in hard disk drives. In: Proceedings of the American control conference, 2001, vol 4, pp 2786–2791. IEEE, New York
44.
go back to reference Hong J, Bernstein DS (1998) Bode integral constraints, collocation, and spillover in active noise and vibration control. IEEE Trans Control Syst Technol 6(1):111–120CrossRef Hong J, Bernstein DS (1998) Bode integral constraints, collocation, and spillover in active noise and vibration control. IEEE Trans Control Syst Technol 6(1):111–120CrossRef
45.
go back to reference Bodson: Call for papers: Recent advances in adaptive methods for frequency estimation with applications. Int J Adapt Control Signal Process 28(6), 562–562 (2014). doi:10.1002/acs.2486 Bodson: Call for papers: Recent advances in adaptive methods for frequency estimation with applications. Int J Adapt Control Signal Process 28(6), 562–562 (2014). doi:10.​1002/​acs.​2486
46.
go back to reference Chen X, Tomizuka M (2015) Overview and new results in disturbance observer based adaptive vibration rejection with application to advanced manufacturing. Int J Adapt Control Signal Process 29(11):1459–1474. doi:10.1002/acs.2546 Chen X, Tomizuka M (2015) Overview and new results in disturbance observer based adaptive vibration rejection with application to advanced manufacturing. Int J Adapt Control Signal Process 29(11):1459–1474. doi:10.​1002/​acs.​2546
47.
go back to reference Chen B, Pin G, Ng WM, Hui SYR, Parisini T (2015) A parallel prefiltering approach for the identification of a biased sinusoidal signal: Theory and experiments. Int J Adapt Control Signal Process 29(12):1591–1608. doi:10.1002/acs.2576 Chen B, Pin G, Ng WM, Hui SYR, Parisini T (2015) A parallel prefiltering approach for the identification of a biased sinusoidal signal: Theory and experiments. Int J Adapt Control Signal Process 29(12):1591–1608. doi:10.​1002/​acs.​2576
48.
go back to reference Khan NA, Boashash B (2016) Multi-component instantaneous frequency estimation using locally adaptive directional time frequency distributions. Int J Adapt Control Signal Process 30(3):429–442. doi:10.1002/acs.2583 Khan NA, Boashash B (2016) Multi-component instantaneous frequency estimation using locally adaptive directional time frequency distributions. Int J Adapt Control Signal Process 30(3):429–442. doi:10.​1002/​acs.​2583
49.
go back to reference Marino R, Tomei P (2016) Adaptive notch filters are local adaptive observers. Int J Adapt Control Signal Process 30(1):128–146. doi:10.1002/acs.2582 Marino R, Tomei P (2016) Adaptive notch filters are local adaptive observers. Int J Adapt Control Signal Process 30(1):128–146. doi:10.​1002/​acs.​2582
50.
go back to reference Carnevale D, Galeani S, Sassano M, Astolfi A (2016) Robust hybrid estimation and rejection of multi-frequency signals. Int J Adapt Control Signal Process. doi:10.1002/acs.2679 Carnevale D, Galeani S, Sassano M, Astolfi A (2016) Robust hybrid estimation and rejection of multi-frequency signals. Int J Adapt Control Signal Process. doi:10.​1002/​acs.​2679
51.
go back to reference Jafari S, Ioannou PA (2016) Rejection of unknown periodic disturbances for continuous-time MIMO systems with dynamic uncertainties. Int J Adapt Control Signal Process. doi:10.1002/acs.2683 Jafari S, Ioannou PA (2016) Rejection of unknown periodic disturbances for continuous-time MIMO systems with dynamic uncertainties. Int J Adapt Control Signal Process. doi:10.​1002/​acs.​2683
52.
go back to reference Menini L, Possieri C, Tornambè A (2015) Sinusoidal disturbance rejection in chaotic planar oscillators. Int J Adapt Control Signal Process 29(12):1578–1590. doi:10.1002/acs.2564 Menini L, Possieri C, Tornambè A (2015) Sinusoidal disturbance rejection in chaotic planar oscillators. Int J Adapt Control Signal Process 29(12):1578–1590. doi:10.​1002/​acs.​2564
53.
go back to reference Ushirobira R, Perruquetti W, Mboup M (2016) An algebraic continuous time parameter estimation for a sum of sinusoidal waveform signals. Int J Adapt Control Signal Process. To appear Ushirobira R, Perruquetti W, Mboup M (2016) An algebraic continuous time parameter estimation for a sum of sinusoidal waveform signals. Int J Adapt Control Signal Process. To appear
Metadata
Title
Introduction to Adaptive and Robust Active Vibration Control
Authors
Ioan Doré Landau
Tudor-Bogdan Airimitoaie
Abraham Castellanos-Silva
Aurelian Constantinescu
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-41450-8_1