Introduction to Computation | springerprofessional.de Skip to main content
Top

2021 | Book

Introduction to Computation

Haskell, Logic and Automata

share
SHARE
insite
SEARCH

About this book

Computation, itself a form of calculation, incorporates steps that include arithmetical and non-arithmetical (logical) steps following a specific set of rules (an algorithm). This uniquely accessible textbook introduces students using a very distinctive approach, quite rapidly leading them into essential topics with sufficient depth, yet in a highly intuitive manner. From core elements like sets, types, Venn diagrams and logic, to patterns of reasoning, calculus, recursion and expression trees, the book spans the breadth of key concepts and methods that will enable students to readily progress with their studies in Computer Science.

Table of Contents

Frontmatter
1. Sets

An important aspect of things is that we’re able to tell the difference between one thing and another. Said another way, we can tell when two things are the same, or equalEquality. Obviously, it’s easy to tell the difference between a person and a noodle. You’d probably find it difficult to tell the difference between two zebras, but zebras can tell the difference. If two things a and b are equal, we write $$a=b$$ a = b ; if they’re different then we write $$a\not =b$$ a ≠ b .

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
2. Types

A set is a collection Typeof things. In programming, a type is also a collection of things. Types are used in logic and mathematics with a similar meaning but without the computational constraints imposed by their use in programming, see https://en.wikipedia.org/wiki/Type_theory .

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
3. Simple Computations

Now that we have some values, classified into types, we can start to compute with them. Starting with something familiar, let’s use Haskell to do some simple arithmetic calculationsArithmetic Expressionarithmetic.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
4. Venn Diagrams and Logical Connectives

It’s possible to work with sets by listing all of their elements—provided they are finite sets, of course—and then comparing sets by comparing the elements in these lists. But a visual representation provides much better support for human intuition.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
5. Lists and Comprehensions

So far, our computations have involved simple “atomic” data values, having types like Int and Bool. More interesting programs involve the use of “compound” data structuresData structure, which group together a number of data values and allow them to be handled as a unit.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
6. Features and Predicates

Human language is often ambiguous, verbose and imprecise, and its structure is complex. Its ability to express layers and shades of meaning makes it well-suited to writing poetry, but not so good for applications that demand precision or when simplicity is important. You’re going to learn to use a language based on propositional logicLogicpropositional for describing features of things, making statements about them, and deciding whether or not statements are true or false. Propositional logic is a very simple form of logic where the focus is on ways of building up complex statements from simpler ones using logical connectivesConnective including conjunction ( $$\wedge $$ ∧ , or && in Haskell), disjunction ( $$\vee $$ ∨ , or ||) and negation ( $$\lnot $$ ¬ , or not).

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
7. Testing Your Programs

As you will have discovered byTesting now, it’s easy to make mistakes in your function definitions. Sometimes you won’t be paying enough attention. Sometimes your fingers will type something different from what your brain intended. Nobody’s perfect!. Fortunately, Haskell will detect some of your mistakes automatically. These include syntaxSyntaxerror Errorsyntax and type errorsTypeerror Errortype as well as typos, like misspelled function names.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
8. Patterns of Reasoning

Now that you know how to use logic for making statements about things and how to check whether or not a given statement is true, the next step is to study patterns of reasoning that allow true statements to be combined to give other statements that are guaranteed to be true. We’ll start with ideas that go all the way back to Aristotle, the founder of logic, who looked at simple patterns of logical argument with two premises and a conclusion, called syllogismsSyllogism. The study of the sound syllogisms and the relationships between them dominated the subject for the next 2000 years. Nowadays, using the modern notation of symbolic logicLogicsymbolic, we can express what scholars were studying for all this time in a much simpler way, and see it as a straightforward combination of a couple of simple ideas. Since we’re not historians, the point of looking at syllogisms isn’t to learn about Aristotle and the history of logic. Rather, it’s to learn those simple ideas and how they fit together, as a starting point for studying the rest of symbolic logic, and to demonstrate the power of a good notation.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
9. More Patterns of Reasoning

So far you’ve seen how to use rules to combine valid sequents into simple deductive arguments about statements of the form “every a is b”. Sometimes the antecedents and/or consequent of a sequent involved negation, to allow statements like “every a is not b”. You’re now going to learn how to build arguments that also take account of invalid sequents, which relies on a different kind of negation. This provides new ways of reasoning, as well as allowing arguments about existence of things that satisfy predicates (“some a is b”). Let’s start by looking at a simple example of commonsense reasoning. We’ll start by making an underlying assumption that Fiona is old enough to buy alcohol.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
10. Lists and Recursion

Recall that the list notation [4,6,8] is just shorthand for the expression 4:(6:(8:[])). So, every list can be written using ::@: (cons) and [][]@[] (empty list) Emptylist Listempty. In fact, every list can be written using : and [] in just one way. That fact is what makes pattern matching work on lists. Given a list l and a pattern p built using variables, [], : and literals, there is at most one way to match p against l. That match gives values to the variables in p. It might not match, if p requires a list that’s longer than l, or if p contains a literal that doesn’t match the value in the corresponding position in l.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
11. More Fun with Recursion

We’ll now look at more examples of recursively defined functions which demonstrate some points that didn’t arise in earlier examples. To start, recallExpressionenumeration the notation [1..10]. Underlying this notation is the following Prelude function, where [m ..n ] stands for enumFromTo m n: Here the recursion is on integers rather than lists. We’ve learned how important it is that recursion is well-founded: it’s okay to define the result of applying a function to a value in terms of its application to a smaller value. But here, we’re defining enumFromTo m n in terms of enumFromTo (m+1) n! Of course, m+1 is larger than m; how can that be right? And the first equation must be the base case, since there is no recursion, but it looks different from all of the previous examples, so what’s going on there?.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
12. Higher-Order Functions

The same patterns of computation keep coming up in function definitions. An example from the beginning of Chap. 11 was in the definitions of enumFromTo and prodFromTo:

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
13. Higher and Higher

SectionsSection areFunctionhigher-order convenient for supplying functional arguments to higher-order functions. For instance, we can replace

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
14. Sequent Calculus

Chapters 8 and 9 covered 2000 years of logic, up to the mid-nineteenth century, but using modern notation which makes things much simpler. We’re now going to study modern symbolic logic.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
15. Algebraic Data Types

So far, we’ve done a lot using the types that come “out of the box” with Haskell. The type of lists has been particularly useful, and higher-order functions have revealed the power of the function type ->. Both of these actually provide an infinite number of types: there is a type [t ] for every type t and a type s -> t for every s and t.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
16. Expression Trees

Tree-like structuresTree are ubiquitous in Informatics. They are used to provide conceptual models of situations and processes involving hierarchies, for representing the syntax of languages involving nesting, and for representing data in a way that is amenable to processing by recursive algorithms. We have already seen some pictures of trees in Chap. 12 , in the explanation of foldr and foldl, and the sequent calculus proofs in Chap. 14 have a tree-like structure.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
17. Karnaugh Maps

Complex logical expressions like $$(a \wedge \lnot b \wedge (c \vee (d \wedge b)) \vee (\lnot b \wedge \lnot a)) \wedge c$$ ( a ∧ ¬ b ∧ ( c ∨ ( d ∧ b ) ) ∨ ( ¬ b ∧ ¬ a ) ) ∧ c are hard to understand and hard to work with. The much simpler expression $$\lnot b \wedge c$$ ¬ b ∧ c , to which it is equivalent, is obviously an improvement. When logical expressions are used to design hardware circuits, simpler expressions produce circuits that are cheaper because they have fewer components.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
18. Relations and Quantifiers

Our simple universe of discourse in Chap. 6 contained a number of things.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
19. Checking Satisfiability

You’ve seen how to use sequent calculus to check whether a sequent is universally true or has a counterexample. We’re now going to look into the problem of checking satisfiabilitySatisfiablechecking: whether a logical expression is true for at least one combination of values for the variables, or predicates, that the expression contains.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
20. Data Representation

Whenever you write a program that requires a kind of data that isn’t already built into Haskell, you need to decide how to represent it in terms of the existing types. Sometimes you’ll be able to find something appropriate in one of Haskell’s library modules. Other times, you will decide to use some combination of existing types, or you’ll define a new algebraic data type.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
21. Data Abstraction

So far you’ve been writing small programs. Imagine for a moment that—perhaps 10 years from now—you’re a member of a team building the software for an autonomous robotaxi. At that point, you’ll be working on much larger programs in collaboration with other team members.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
22. Efficient CNF Conversion

You’ve learned several methods for converting logical expressions to conjunctive normal form (CNF), starting with Karnaugh maps in Chap. 17. We’ll look more closely at one of those methods, using the laws of Boolean algebra, later in this chapter.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
23. Counting Satisfying Valuations

We’re now going to look into a special case of CNF expressions: those with clauses containing no more than two literals each. Surprisingly, there’s a dramatic efficiency difference between satisfiability checking in this case and when the limit is increased, even to just three literals per clause.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
24. Type Classes

You’ve seen that there are some common functions, like == and show, that are available for many but not all types. For instance, neither == nor show will work on function types. The type of a polymorphic function can require that it be applied only on types that have such functions, and these requirements can be inferred automatically.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
25. Search in Trees

Trees are a common data structure, as you’ve seen. They were used to represent the syntax of languages like propositional logic in Chap. 16, and as the basis for an efficient way of representing sets of integers in Chap. 20.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
26. Combinatorial Algorithms

Some of the programs you have seen use clever algorithms or clever data representations to avoid unnecessary computation. But for some problems, there is no clever algorithm, or at least none that has been discovered yet.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
27. Finite Automata

As you saw in Chap. 13 , everything in Haskell is ultimately based on lambda expressions, meaning that computation in Haskell is based on function application and substitution. That is Haskell’s model of computation: the basic mechanisms that underlie its way of producing results of computational problems.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
28. Deterministic Finite Automata

The examples of deterministic finite automata in the last chapter were given in the form of simple diagrams, with states drawn as circles and transitions drawn as arrows between the circles. With a diagram, it’s pretty easy to try out examples of input strings to see what happens—provided the diagram isn’t so complicated that it resembles a bowl of spaghetti. We’re now going to look at a mathematical definition of DFAs that is equivalent to giving a diagram, but phrased in terms of symbols including Greek letters. But why bother?.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
29. Non-deterministic Finite Automata

Should you take the lemon cake or the crème brûlée? Or, consider a more important decision: you’re lost in the mountains in a blizzard without a GPS, and you’re wondering whether to take the path to the left or to the right.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
30. Input/Output and Monads

All of the Haskell programs you’ve seen so far have been pure mathematical functions that consume input values and produce output values. Your interaction with these functions has been by applying them to inputs during an interactive Haskell session, and looking at the outputs that appear on your screen once computation is finished.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
31. Regular Expressions

You’ve seen how to describe sets of strings—or languages—using different kinds of finite automata. An automaton describes a language by accepting the strings in the language and rejecting the rest. It decides whether or not to accept a string via a mechanical computation process based on the sequence of symbols in the string.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
32. Non-Regular Languages

Having learned a lot about regular languages, different ways of describing them, and a little about their applications, you will have rightly come to understand that they are important. As you’ve seen, the union of two regular languages is a regular language, and the same goes for intersection, complement, concatenation, and iteration. So, given just a few simple regular languages—for example, $$\{a\}$$ { a } and $$\{b\}$$ { b } —you can build a large number of new regular languages.

Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler
Backmatter
Metadata
Title
Introduction to Computation
Authors
Donald Sannella
Michael Fourman
Haoran Peng
Philip Wadler
Copyright Year
2021
Electronic ISBN
978-3-030-76908-6
Print ISBN
978-3-030-76907-9
DOI
https://doi.org/10.1007/978-3-030-76908-6