Skip to main content
Top

2020 | OriginalPaper | Chapter

5. Introduction to Condensation

Authors : Sameer Khandekar, K. Muralidhar

Published in: Drop Dynamics and Dropwise Condensation on Textured Surfaces

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Condensation involves change of phase from the vapor state to the liquid. It is associated with mass transfer, during which vapor migrates towards the liquid-vapor interface and is converted into liquid. Condensation process is initiated by subcooling, a temperature difference between the bulk vapor and the solid surface. Subsequently, energy in the form of the latent heat must be removed from the interfacial region either by conduction and convection through the droplet and conduction through the substrate. This chapter introduces classification and significance of various physical processes in dropwise condensation, while comparing it with the filmwise form of condensation. The importance of surface wettability and equilibrium contact angle on the formation of drops is highlighted. The shape of the drop plays a central role in fixing conduction resistance, the onset of gravitational instability with respect to static equilibrium, as well as its motion over the substrate. Post instability, fresh nucleation ensures that the dropwise condensation process is intrinsically cyclic, with a characteristic timescale, area coverage, and drop size distribution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Berthier, J. (2008). Microdrops and digital microfluidics (pp. 75–179). Norwich, CT: William Andrew Inc.. Berthier, J. (2008). Microdrops and digital microfluidics (pp. 75–179). Norwich, CT: William Andrew Inc..
go back to reference Briscoe, B. J., & Galvin, K. P. (1991b). The sliding of sessile and pendent droplets the critical condition. Journal of Colloid and Interface Science, 52, 219–229. Briscoe, B. J., & Galvin, K. P. (1991b). The sliding of sessile and pendent droplets the critical condition. Journal of Colloid and Interface Science, 52, 219–229.
go back to reference Brown, R., Orr, F., Jr., & Scriven, L. (1980). Static drop on an inclined plate: Analysis by the finite element method. Journal of Colloid and Interface Science, 73(1), 76–87. Brown, R., Orr, F., Jr., & Scriven, L. (1980). Static drop on an inclined plate: Analysis by the finite element method. Journal of Colloid and Interface Science, 73(1), 76–87.
go back to reference Carey, V. P. (2008). Liquid-vapor phase-change phenomena (2nd ed., pp. 45–472). New York: Taylor and Francis Group LLC. Carey, V. P. (2008). Liquid-vapor phase-change phenomena (2nd ed., pp. 45–472). New York: Taylor and Francis Group LLC.
go back to reference Chen, C. H., Cai, Q., Tsai, C., & Chen, C. L. (2007). Dropwise condensation on superhydrophobic surfaces with two-tier roughness. Applied Physics Letters, 90, 173108–173111. Chen, C. H., Cai, Q., Tsai, C., & Chen, C. L. (2007). Dropwise condensation on superhydrophobic surfaces with two-tier roughness. Applied Physics Letters, 90, 173108–173111.
go back to reference de Gennes, P.-G. (1985). Wetting: Static and dynamics. Review of Modern Physics, 57, 827–863.MathSciNet de Gennes, P.-G. (1985). Wetting: Static and dynamics. Review of Modern Physics, 57, 827–863.MathSciNet
go back to reference Dimitrakopoulos, P., & Higdon, J. J. L. (1999). On the gravitational displacement of the three-dimensional fluid droplets from inclined solid surfaces. Journal of Fluid Mechanics, 395, 181–209.MATH Dimitrakopoulos, P., & Higdon, J. J. L. (1999). On the gravitational displacement of the three-dimensional fluid droplets from inclined solid surfaces. Journal of Fluid Mechanics, 395, 181–209.MATH
go back to reference Dussan, E. B. (1979). On the spreading of liquid on solid surfaces: Static and dynamic Contact Lines. Annual Review of Fluid Mechanics, 11, 371–400. Dussan, E. B. (1979). On the spreading of liquid on solid surfaces: Static and dynamic Contact Lines. Annual Review of Fluid Mechanics, 11, 371–400.
go back to reference Dussan, E. B. (1985). On the ability of drops or bubbles to stick to non-horizontal surface of solids. Journal of Fluid Mechanics, 151, 1–20.MATH Dussan, E. B. (1985). On the ability of drops or bubbles to stick to non-horizontal surface of solids. Journal of Fluid Mechanics, 151, 1–20.MATH
go back to reference Dussan, E. B., & Chow, R. T. (1983). On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. Journal of Fluid Mechanics, 137, 1–29.MATH Dussan, E. B., & Chow, R. T. (1983). On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. Journal of Fluid Mechanics, 137, 1–29.MATH
go back to reference ElSherbini, A. I., & Jacobi, A. M. (2004a). Liquid drops on vertical and inclined surfaces—I: An experimental study of drop geometry. Journal of Colloid and Interface Science, 273, 556–565. ElSherbini, A. I., & Jacobi, A. M. (2004a). Liquid drops on vertical and inclined surfaces—I: An experimental study of drop geometry. Journal of Colloid and Interface Science, 273, 556–565.
go back to reference ElSherbini, A. I., & Jacobi, A. M. (2004b). Liquid drops on vertical and inclined surfaces—II: An experimental study of drop geometry. Journal of Colloid and Interface Science, 273, 566–575. ElSherbini, A. I., & Jacobi, A. M. (2004b). Liquid drops on vertical and inclined surfaces—II: An experimental study of drop geometry. Journal of Colloid and Interface Science, 273, 566–575.
go back to reference ElSherbini, A. I., & Jacobi, A. M. (2006). Retention forces and contact angles for critical liquid drops on non-horizontal surfaces. Journal of Colloid and Interface Science, 299, 841–849. ElSherbini, A. I., & Jacobi, A. M. (2006). Retention forces and contact angles for critical liquid drops on non-horizontal surfaces. Journal of Colloid and Interface Science, 299, 841–849.
go back to reference Extrand, C. W., & Kumagai, Y. (1995). Liquid drop on an inclined plane: The relation between contact angles, drop shape and retentive forces. Journal of Colloid and Interface Science, 170, 515–521. Extrand, C. W., & Kumagai, Y. (1995). Liquid drop on an inclined plane: The relation between contact angles, drop shape and retentive forces. Journal of Colloid and Interface Science, 170, 515–521.
go back to reference Furmidge, C. G. (1962). The sliding drop on solid surfaces and a theory for spray retention. Journal of Colloid Science, 17, 309–324. Furmidge, C. G. (1962). The sliding drop on solid surfaces and a theory for spray retention. Journal of Colloid Science, 17, 309–324.
go back to reference Griffith, P. (1985). Dropwise condensation. In W. P. Rohsenow, J. P. Hartnett, & E. N. Ganic (Eds.), Handbook of heat transfer fundamentals (2nd ed., pp. 37–49). New York: McGraw-Hill. Griffith, P. (1985). Dropwise condensation. In W. P. Rohsenow, J. P. Hartnett, & E. N. Ganic (Eds.), Handbook of heat transfer fundamentals (2nd ed., pp. 37–49). New York: McGraw-Hill.
go back to reference Hsieh, C. T., Chen, W. Y., & Wu, F. L. (2008). Fabrication and super-hydrophobicity of fluorinated carbon fabrics with micro/nano-scaled two-tier roughness. Carbon, 46, 1218–1224. Hsieh, C. T., Chen, W. Y., & Wu, F. L. (2008). Fabrication and super-hydrophobicity of fluorinated carbon fabrics with micro/nano-scaled two-tier roughness. Carbon, 46, 1218–1224.
go back to reference Huh, C., & Mason, S. G. (1977). Effect of surface roughness on wetting (theoretical). Journal of Colloids and Interface Science, 60, 11–37. Huh, C., & Mason, S. G. (1977). Effect of surface roughness on wetting (theoretical). Journal of Colloids and Interface Science, 60, 11–37.
go back to reference Kim, S., & Kim, K. J. (2011). Dropwise condensation modeling suitable for superhydrophobic surfaces. ASME Journal of Heat Transfer, 133(8), 081502, 1–8. Kim, S., & Kim, K. J. (2011). Dropwise condensation modeling suitable for superhydrophobic surfaces. ASME Journal of Heat Transfer, 133(8), 081502, 1–8.
go back to reference Krasovitski, B., & Marmur, A. (2005). Drops down the hill: Theoretical study of limiting contact angles and the hysteresis range on a tilted plate. Langmuir, 21(9), 3881–3885. Krasovitski, B., & Marmur, A. (2005). Drops down the hill: Theoretical study of limiting contact angles and the hysteresis range on a tilted plate. Langmuir, 21(9), 3881–3885.
go back to reference Lawal, A., & Brown, R. A. (1982). The stability of an inclined pendent drop. Journal of Colloid and Interface Science, 89, 332–345. Lawal, A., & Brown, R. A. (1982). The stability of an inclined pendent drop. Journal of Colloid and Interface Science, 89, 332–345.
go back to reference Leach, R. N., Stevens, F., Langford, S. C., & Dickinson, J. T. (2006). Dropwise condensation: Experiments and simulations of nucleation and growth of water drops in a cooling system. Langmuir, 22, 8864–8872. Leach, R. N., Stevens, F., Langford, S. C., & Dickinson, J. T. (2006). Dropwise condensation: Experiments and simulations of nucleation and growth of water drops in a cooling system. Langmuir, 22, 8864–8872.
go back to reference Leger, L., & Joany, J. F. (1977). Liquid spreading. Reports on Progress in Physics, 57, 431–487. Leger, L., & Joany, J. F. (1977). Liquid spreading. Reports on Progress in Physics, 57, 431–487.
go back to reference Leipertz, A. (2010). Dropwise condensation (section J3). In VDI heat atlas (pp. 933–938). Berlin: Springer. Leipertz, A. (2010). Dropwise condensation (section J3). In VDI heat atlas (pp. 933–938). Berlin: Springer.
go back to reference Lenz, P., & Lipowsky, R. (1998). Morphological transitions of wetting layer on structured surfaces. Physical Review Letters, 80(9), 1920–1998. Lenz, P., & Lipowsky, R. (1998). Morphological transitions of wetting layer on structured surfaces. Physical Review Letters, 80(9), 1920–1998.
go back to reference Li, W., & Amirfazli, A. (2007). Microtextured superhydrophobic surfaces: A thermodynamic analysis. Advances in Colloid and Interface Science, 132, 51–68. Li, W., & Amirfazli, A. (2007). Microtextured superhydrophobic surfaces: A thermodynamic analysis. Advances in Colloid and Interface Science, 132, 51–68.
go back to reference Ma, X. H., Zhou, X. D., Lan, Z., Li, Y. M., & Zhang, Y. (2008). Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation. International Journal of Heat and Mass Transfer, 51, 1728–1737.MATH Ma, X. H., Zhou, X. D., Lan, Z., Li, Y. M., & Zhang, Y. (2008). Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation. International Journal of Heat and Mass Transfer, 51, 1728–1737.MATH
go back to reference Ma, X., Wang, S., Lan, Z., Peng, B., Ma, H. B., & Cheng, P. (2012). Wetting mode evolution of steam dropwise condensation on superhydrophobic surface in the presence of non-condensable gas. ASME Journal of Heat Transfer, 134, 021501–021509. Ma, X., Wang, S., Lan, Z., Peng, B., Ma, H. B., & Cheng, P. (2012). Wetting mode evolution of steam dropwise condensation on superhydrophobic surface in the presence of non-condensable gas. ASME Journal of Heat Transfer, 134, 021501–021509.
go back to reference Marek, R., & Straub, J. (2001). Analysis of the evaporation coefficient and the condensation coefficient of water. International Journal of Heat and Mass Transfer, 44(1), 39–53.MATH Marek, R., & Straub, J. (2001). Analysis of the evaporation coefficient and the condensation coefficient of water. International Journal of Heat and Mass Transfer, 44(1), 39–53.MATH
go back to reference Mikic, B. B. (1969). On the mechanism of dropwise condensation. International Journal of Heat and Mass Transfer, 12, 1311–1315. Mikic, B. B. (1969). On the mechanism of dropwise condensation. International Journal of Heat and Mass Transfer, 12, 1311–1315.
go back to reference Mills, A. F., & Seban, R. A. (1967). The condensation coefficient of water. International Journal of Heat and Mass Transfer, 10, 1815–1827. Mills, A. F., & Seban, R. A. (1967). The condensation coefficient of water. International Journal of Heat and Mass Transfer, 10, 1815–1827.
go back to reference Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K., & Watanabe, T. (2000). Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir, 16, 5754–5760. Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K., & Watanabe, T. (2000). Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir, 16, 5754–5760.
go back to reference Ondarçuhu, T. (1995). Total or partial pinning of a droplet on a surface with chemical discontinuity. Journal of Physics II France, 5, 227–241. Ondarçuhu, T. (1995). Total or partial pinning of a droplet on a surface with chemical discontinuity. Journal of Physics II France, 5, 227–241.
go back to reference Öner, D., & McCarthy, T. J. (2000). Ultra-hydrophobic surfaces: Effects of topography length scales on wettability. Langmuir, 16, 7777–7782. Öner, D., & McCarthy, T. J. (2000). Ultra-hydrophobic surfaces: Effects of topography length scales on wettability. Langmuir, 16, 7777–7782.
go back to reference Pierce, E., Carmona, F. J., & Amirfazli, A. (2008). Understanding of sliding and contact angles results in tilted plate experiments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 323, 73–82. Pierce, E., Carmona, F. J., & Amirfazli, A. (2008). Understanding of sliding and contact angles results in tilted plate experiments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 323, 73–82.
go back to reference Rose, J. W. (2002). Dropwise condensation theory and experiment: A review. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 216, 115–128. Rose, J. W. (2002). Dropwise condensation theory and experiment: A review. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 216, 115–128.
go back to reference Rykaczewski, K. (2012). Microdroplet growth mechanism during water condensation on superhydrophobic surfaces. Langmuir, 28, 7720–7729. Rykaczewski, K. (2012). Microdroplet growth mechanism during water condensation on superhydrophobic surfaces. Langmuir, 28, 7720–7729.
go back to reference Shibuichi, S., Onda, T., Satoh, N., & Tsujii, K. (1996). Super-water-repellent fractal surfaces. Journal of Physical Chemistry, 100, 19512–19617. Shibuichi, S., Onda, T., Satoh, N., & Tsujii, K. (1996). Super-water-repellent fractal surfaces. Journal of Physical Chemistry, 100, 19512–19617.
go back to reference Sukhatme, S. P., & Rohsenow, W. M. (1966). Heat transfer during film condensation of a liquid metal vapor. ASME Journal of Heat Transfer, 88, 19–28. Sukhatme, S. P., & Rohsenow, W. M. (1966). Heat transfer during film condensation of a liquid metal vapor. ASME Journal of Heat Transfer, 88, 19–28.
go back to reference Tanasawa, I. (1991). Advance in condensation heat transfer. In J. P. Hartnett, T. F. Irvine, & I. Y. Cho (Eds.), Advances in heat transfer (Vol. 21, pp. 56–136). San Diego, CA: Academic Press. Tanasawa, I. (1991). Advance in condensation heat transfer. In J. P. Hartnett, T. F. Irvine, & I. Y. Cho (Eds.), Advances in heat transfer (Vol. 21, pp. 56–136). San Diego, CA: Academic Press.
go back to reference Trimmer, W. S. N. (1989). Microrobots and micromechanical system. Sensors and Actuators, 19, 267–287. Trimmer, W. S. N. (1989). Microrobots and micromechanical system. Sensors and Actuators, 19, 267–287.
go back to reference Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry Research, 28, 988–994. Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry Research, 28, 988–994.
Metadata
Title
Introduction to Condensation
Authors
Sameer Khandekar
K. Muralidhar
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-48461-3_5

Premium Partners