Skip to main content
Top

2020 | OriginalPaper | Chapter

4. Introduction to Evaporative Heat Transfer

Authors : Manish Bhendura, K. Muralidhar, Sameer Khandekar

Published in: Drop Dynamics and Dropwise Condensation on Textured Surfaces

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Evaporation refers to the change of phase occurring at the air or gas interface formed with a liquid medium. The discussion here is restricted to evaporation of a water body. The quantity of importance is the evaporation rate, or, the evaporative mass flux. In a continuum formulation, it is determined by requiring continuity of temperature and pressure at the interface, followed by visualizing a layer of air saturated with water vapor just above the water body. The gradient in humidity in the gas phase sets up mass fluxes of water vapor and hence decides the evaporative mass flux. Additional phenomena such as cooling of the water body and fluid convection will define the overall transport process. This description is referred to as the quasi-equilibrium model. In contrast, the non-equilibrium model, based on the kinetic theory of gases postulates the appearance of a Knudsen layer at the air-water interface. The extent of jump in temperature across the Knudsen layer can significantly affect the evaporation rate. These two models are described at length in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aursand, E., & Ytrehus, T. (2019). Comparison of kinetic theory evaporation models for liquid thin-films. International Journal of Multiphase Flow, 116, 67–79.MathSciNetCrossRef Aursand, E., & Ytrehus, T. (2019). Comparison of kinetic theory evaporation models for liquid thin-films. International Journal of Multiphase Flow, 116, 67–79.MathSciNetCrossRef
go back to reference Badam, V. K., Kumar, V., Durst, F., & Danov, K. (2007). Experimental and theoretical investigations on interfacial temperature jumps during evaporation. Experimental Thermal and Fluid Science, 32(1), 276–292.CrossRef Badam, V. K., Kumar, V., Durst, F., & Danov, K. (2007). Experimental and theoretical investigations on interfacial temperature jumps during evaporation. Experimental Thermal and Fluid Science, 32(1), 276–292.CrossRef
go back to reference Bird, R. B., Stewart, W. E., & Lightfoot, E. N., Transport Phenomena, John Wiley & Sons (2002). Bird, R. B., Stewart, W. E., & Lightfoot, E. N., Transport Phenomena, John Wiley & Sons (2002).
go back to reference Frezzotti, A., Gibelli, L., Lockerby, D. A., & Sprittles, J. E. (2018). Mean-field kinetic theory approach to evaporation of a binary liquid into vacuum. Physical Review Fluids, 3(5), 054001.CrossRef Frezzotti, A., Gibelli, L., Lockerby, D. A., & Sprittles, J. E. (2018). Mean-field kinetic theory approach to evaporation of a binary liquid into vacuum. Physical Review Fluids, 3(5), 054001.CrossRef
go back to reference Gerasimov, D. N., & Yurin, E. I. (2018). Kinetics of evaporation (Vol. 68). Cham: Springer.CrossRef Gerasimov, D. N., & Yurin, E. I. (2018). Kinetics of evaporation (Vol. 68). Cham: Springer.CrossRef
go back to reference Kazemi, M. A., Nobes, D. S., & Elliott, J. A. (2017). Experimental and numerical study of the evaporation of water at low pressures. Langmuir, 33(18), 4578–4591.CrossRef Kazemi, M. A., Nobes, D. S., & Elliott, J. A. (2017). Experimental and numerical study of the evaporation of water at low pressures. Langmuir, 33(18), 4578–4591.CrossRef
go back to reference Kokya, B. A., & Kokya, T. A. (2008). Proposing a formula for evaporation measurement from saltwater resources. Hydrological Processes: An International Journal, 22(12), 2005–2012.CrossRef Kokya, B. A., & Kokya, T. A. (2008). Proposing a formula for evaporation measurement from saltwater resources. Hydrological Processes: An International Journal, 22(12), 2005–2012.CrossRef
go back to reference Kryokov, A. P. & Levashov, V. Y. (2011). About evaporation-condensation coefficients on the vapor liquid interface of high thermal conductivity matters, Int. J. Heat and Mass Transfer, 54(30), 42–3048. Kryokov, A. P. & Levashov, V. Y. (2011). About evaporation-condensation coefficients on the vapor liquid interface of high thermal conductivity matters, Int. J. Heat and Mass Transfer, 54(30), 42–3048.
go back to reference Marek, R., & Straub, J. (2001). Analysis of the evaporation coefficient and the condensation coefficient of water. International Journal of Heat and Mass Transfer, 44(1), 39–53.CrossRef Marek, R., & Straub, J. (2001). Analysis of the evaporation coefficient and the condensation coefficient of water. International Journal of Heat and Mass Transfer, 44(1), 39–53.CrossRef
go back to reference Nepomnyashchy, A. A., & Simanovskii, I. B. (2004). Influence of thermocapillary effect and interfacial heat release on convective oscillations in a two-layer system. Physics of Fluids, 16(4), 1127–1139.MathSciNetCrossRef Nepomnyashchy, A. A., & Simanovskii, I. B. (2004). Influence of thermocapillary effect and interfacial heat release on convective oscillations in a two-layer system. Physics of Fluids, 16(4), 1127–1139.MathSciNetCrossRef
go back to reference Polikarpov, A. P., Graur, I. A., Gatapova, E. Y., & Kabov, O. A. (2019). Kinetic simulation of the non-equilibrium effects at the liquid-vapor interface. International Journal of Heat and Mass Transfer, 136, 449–456.CrossRef Polikarpov, A. P., Graur, I. A., Gatapova, E. Y., & Kabov, O. A. (2019). Kinetic simulation of the non-equilibrium effects at the liquid-vapor interface. International Journal of Heat and Mass Transfer, 136, 449–456.CrossRef
go back to reference Qin, T., & Grigoriev, R. O. (2015), The effect of noncondensables on buoyancy-thermocapillary convectiuon of volatile fluids in confined geometries, Int. J. Heat and Mass Transfer, 90, 678–688. Qin, T., & Grigoriev, R. O. (2015), The effect of noncondensables on buoyancy-thermocapillary convectiuon of volatile fluids in confined geometries, Int. J. Heat and Mass Transfer, 90, 678–688.
go back to reference Shishkova, I. N., Kryukov, A. P., & Levashov, V. Y. (2017). Study of evaporation-condensation problems: From liquid through interface surface to vapor. International Journal of Heat and Mass Transfer, 112, 926–932.CrossRef Shishkova, I. N., Kryukov, A. P., & Levashov, V. Y. (2017). Study of evaporation-condensation problems: From liquid through interface surface to vapor. International Journal of Heat and Mass Transfer, 112, 926–932.CrossRef
go back to reference Tiwari, G. N., & Sahota, L. (2017). Advanced solar-distillation systems: Basic principles, thermal modeling and its application. Singapore: Springer.CrossRef Tiwari, G. N., & Sahota, L. (2017). Advanced solar-distillation systems: Basic principles, thermal modeling and its application. Singapore: Springer.CrossRef
go back to reference Ytrehus, T., & Østmo, S. (1996). Kinetic theory approach to interphase processes. International Journal Multiphase Flow, 22(1), 133–155.CrossRef Ytrehus, T., & Østmo, S. (1996). Kinetic theory approach to interphase processes. International Journal Multiphase Flow, 22(1), 133–155.CrossRef
Metadata
Title
Introduction to Evaporative Heat Transfer
Authors
Manish Bhendura
K. Muralidhar
Sameer Khandekar
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-48461-3_4

Premium Partners