Skip to main content
Top

2024 | OriginalPaper | Chapter

Introduction to Gaussian Process Regression in Bayesian Inverse Problems, with New Results on Experimental Design for Weighted Error Measures

Authors : Tapio Helin, Andrew M. Stuart, Aretha L. Teckentrup, Konstantinos C. Zygalakis

Published in: Monte Carlo and Quasi-Monte Carlo Methods

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Bayesian posterior distributions arising in modern applications are often computationally intractable due to the large computational cost of evaluating the data likelihood. Examples include inverse problems in partial differential equation models arising in climate modeling and in subsurface fluid flow. To alleviate the problem of expensive likelihood evaluation, a natural approach is to use Gaussian process regression to build a surrogate model for the likelihood, resulting in an approximate posterior distribution that is amenable to computations in practice. This paper serves as an introduction to Gaussian process regression, in particular in the context of building surrogate models for inverse problems; we also present new insights into a suitable choice of training points, motivated by the use of Gaussian processes in approximate Bayesian inversion. We show that the error between the true and approximate posterior distribution can be bounded by the error between the true and approximate likelihood, measured in the \(L^2\)-norm weighted by the true posterior; furthermore we show that minimizing the error between the true and approximate likelihood in this norm suggests choosing the training points in the Gaussian process surrogate model based on the true posterior.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
For \(p_1=\infty \), assumption (i) requires bounding the standard \(L^\infty (U)\)-norm, due to the corresponding Hölder inequality \(\int _U f g \mu ^y(\textrm{d}u) \le \sup _{u \in U } |f(u)| \int _U |g| \mu ^y(\textrm{d}u) = \Vert f\Vert _{L^\infty (U)} \Vert g\Vert _{L^1_{\mu ^y}(U)}\).
 
Literature
1.
go back to reference Arcangéli, R., López de Silanes, M.C., Torrens, J.J.: Extension of sampling inequalities to Sobolev semi-norms of fractional order and derivative data. Numerische Mathematik. 121(3), 587–608 (2012) Arcangéli, R., López de Silanes, M.C., Torrens, J.J.: Extension of sampling inequalities to Sobolev semi-norms of fractional order and derivative data. Numerische Mathematik. 121(3), 587–608 (2012)
2.
go back to reference Bai, T., Teckentrup, A.L., Zygalakis, K.C.: Gaussian processes for Bayesian inverse problems associated with linear partial differential equations. arXiv:2307.08343 Bai, T., Teckentrup, A.L., Zygalakis, K.C.: Gaussian processes for Bayesian inverse problems associated with linear partial differential equations. arXiv:​2307.​08343
3.
go back to reference Briol, F.X., Oates, C.J., Cockayne, J., Chen, W.Y., Girolami, M.: On the sampling problem for kernel quadrature. In: International Conference on Machine Learning, pp. 586–595. PMLR (2017) Briol, F.X., Oates, C.J., Cockayne, J., Chen, W.Y., Girolami, M.: On the sampling problem for kernel quadrature. In: International Conference on Machine Learning, pp. 586–595. PMLR (2017)
4.
go back to reference Bui-Thanh, T., Willcox, K., Ghattas, O.: Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comput. 30(6), 3270–88 (2008)MathSciNetCrossRef Bui-Thanh, T., Willcox, K., Ghattas, O.: Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comput. 30(6), 3270–88 (2008)MathSciNetCrossRef
5.
go back to reference Calvetti, D., Dunlop, M., Somersalo, E., Stuart, A.: Iterative updating of model error for Bayesian inversion. Inverse Prob. 34(2), 025008 (2018)MathSciNetCrossRef Calvetti, D., Dunlop, M., Somersalo, E., Stuart, A.: Iterative updating of model error for Bayesian inversion. Inverse Prob. 34(2), 025008 (2018)MathSciNetCrossRef
6.
go back to reference Cleary, E., Garbuno-Inigo, A., Lan, S., Schneider, T., Stuart, A.M.: Calibrate, emulate, sample. J. Comput. Phys. 424, 109716 (2021)MathSciNetCrossRef Cleary, E., Garbuno-Inigo, A., Lan, S., Schneider, T., Stuart, A.M.: Calibrate, emulate, sample. J. Comput. Phys. 424, 109716 (2021)MathSciNetCrossRef
7.
go back to reference Cockayne, J., Oates, C., Sullivan, T., Girolami, M.: Probabilistic numerical methods for PDE-constrained Bayesian inverse problems. In: AIP Conference Proceedings, vol. 1853, No. 1. AIP Publishing Cockayne, J., Oates, C., Sullivan, T., Girolami, M.: Probabilistic numerical methods for PDE-constrained Bayesian inverse problems. In: AIP Conference Proceedings, vol. 1853, No. 1. AIP Publishing
8.
go back to reference Conrad, P.R., Girolami, M., Särkkä, S., Stuart, A., Zygalakis, K.: Statistical analysis of differential equations: introducing probability measures on numerical solutions. Stat. Comput. 27, 1065–82 (2017)MathSciNetCrossRef Conrad, P.R., Girolami, M., Särkkä, S., Stuart, A., Zygalakis, K.: Statistical analysis of differential equations: introducing probability measures on numerical solutions. Stat. Comput. 27, 1065–82 (2017)MathSciNetCrossRef
9.
go back to reference Conrad, P.R., Marzouk, Y.M., Pillai, N.S., Smith, A.: Accelerating asymptotically exact MCMC for computationally intensive models via local approximations. J. Am. Stat. Assoc. 111(516), 1591–607 (2016)MathSciNetCrossRef Conrad, P.R., Marzouk, Y.M., Pillai, N.S., Smith, A.: Accelerating asymptotically exact MCMC for computationally intensive models via local approximations. J. Am. Stat. Assoc. 111(516), 1591–607 (2016)MathSciNetCrossRef
10.
go back to reference Cotter, S.L., Roberts, G.O., Stuart, A.M., White, D.: MCMC methods for functions: modifying old algorithms to make them faster. Stat. Sci. 28(3), 424 (2013)MathSciNetCrossRef Cotter, S.L., Roberts, G.O., Stuart, A.M., White, D.: MCMC methods for functions: modifying old algorithms to make them faster. Stat. Sci. 28(3), 424 (2013)MathSciNetCrossRef
11.
go back to reference Cui, T., Fox, C., O’sullivan, M.J.: Bayesian calibration of a large-scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm. Water Resources Res. 47(10) (2011) Cui, T., Fox, C., O’sullivan, M.J.: Bayesian calibration of a large-scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm. Water Resources Res. 47(10) (2011)
12.
go back to reference Dunbar, O.R., Garbuno-Inigo, A., Schneider, T., Stuart, A.M.: Calibration and uncertainty quantification of convective parameters in an idealized GCM. J. Adv. Model. Earth Syst. 13(9), e2020MS002454 (2021) Dunbar, O.R., Garbuno-Inigo, A., Schneider, T., Stuart, A.M.: Calibration and uncertainty quantification of convective parameters in an idealized GCM. J. Adv. Model. Earth Syst. 13(9), e2020MS002454 (2021)
13.
go back to reference Girolami, M., Calderhead, B.: Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. Ser. B: Stat. Method. 73(2), 123–214 (2011)MathSciNetCrossRef Girolami, M., Calderhead, B.: Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. Ser. B: Stat. Method. 73(2), 123–214 (2011)MathSciNetCrossRef
14.
go back to reference Hastings, W.K.: Monte Carlo sampling methods using Markov Chains and their applications. Biometrika. 1, 97–109 (1970)MathSciNetCrossRef Hastings, W.K.: Monte Carlo sampling methods using Markov Chains and their applications. Biometrika. 1, 97–109 (1970)MathSciNetCrossRef
15.
go back to reference Huang, D.Z., Schneider, T., Stuart, A.M.: Iterated Kalman methodology for inverse problems. J. Comput. Phys. 463, 111262 (2022)MathSciNetCrossRef Huang, D.Z., Schneider, T., Stuart, A.M.: Iterated Kalman methodology for inverse problems. J. Comput. Phys. 463, 111262 (2022)MathSciNetCrossRef
16.
go back to reference Järvenpää, M., Gutmann, M.U., Vehtari, A., Marttinen, P.: Parallel gaussian process surrogate Bayesian inference with noisy likelihood evaluations. Bayesian Anal. 16(1), 147–78 (2021)MathSciNetCrossRef Järvenpää, M., Gutmann, M.U., Vehtari, A., Marttinen, P.: Parallel gaussian process surrogate Bayesian inference with noisy likelihood evaluations. Bayesian Anal. 16(1), 147–78 (2021)MathSciNetCrossRef
17.
go back to reference Kaipio, J., Somersalo, E.: Statistical and Computational inverSe Problems. Springer Science & Business Media (2006) Kaipio, J., Somersalo, E.: Statistical and Computational inverSe Problems. Springer Science & Business Media (2006)
18.
go back to reference Kanagawa, M., Hennig, P., Sejdinovic, D., Sriperumbudur, B.K.: Gaussian processes and kernel methods: a review on connections and equivalences. arXiv:1807.02582 Kanagawa, M., Hennig, P., Sejdinovic, D., Sriperumbudur, B.K.: Gaussian processes and kernel methods: a review on connections and equivalences. arXiv:​1807.​02582
19.
go back to reference Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. J. R. Stat. Soc.: Ser. B (Statistical Methodology) 63(3), 425–64 (2001)MathSciNetCrossRef Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. J. R. Stat. Soc.: Ser. B (Statistical Methodology) 63(3), 425–64 (2001)MathSciNetCrossRef
20.
go back to reference Latz, J.: On the well-posedness of Bayesian inverse problems. SIAM/ASA J. Uncertainty Quantification 8(1), 451–82 (2020)MathSciNetCrossRef Latz, J.: On the well-posedness of Bayesian inverse problems. SIAM/ASA J. Uncertainty Quantification 8(1), 451–82 (2020)MathSciNetCrossRef
21.
go back to reference Le, E.B., Myers, A., Bui-Thanh, T., Nguyen, Q.P.: A data-scalable randomized misfit approach for solving large-scale PDE-constrained inverse problems. Inverse Prob. 33(6), 065003 (2017)MathSciNetCrossRef Le, E.B., Myers, A., Bui-Thanh, T., Nguyen, Q.P.: A data-scalable randomized misfit approach for solving large-scale PDE-constrained inverse problems. Inverse Prob. 33(6), 065003 (2017)MathSciNetCrossRef
22.
go back to reference Lie, H.C., Stuart, A.M., Sullivan, T.J.: Strong convergence rates of probabilistic integrators for ordinary differential equations. Stat. Comput. 29(6), 1265–83 (2019)MathSciNetCrossRef Lie, H.C., Stuart, A.M., Sullivan, T.J.: Strong convergence rates of probabilistic integrators for ordinary differential equations. Stat. Comput. 29(6), 1265–83 (2019)MathSciNetCrossRef
23.
go back to reference Lie, H.C., Sullivan, T.J., Teckentrup, A.L.: Random forward models and log-likelihoods in Bayesian inverse problems. SIAM/ASA J. Uncertainty Quantification 6(4), 1600–29 (2018)MathSciNetCrossRef Lie, H.C., Sullivan, T.J., Teckentrup, A.L.: Random forward models and log-likelihoods in Bayesian inverse problems. SIAM/ASA J. Uncertainty Quantification 6(4), 1600–29 (2018)MathSciNetCrossRef
24.
go back to reference Marzouk, Y.M., Najm, H.N., Rahn, L.A.: Stochastic spectral methods for efficient Bayesian solution of inverse problems. J. Comput. Phys. 224(2), 560–86 (2007)MathSciNetCrossRef Marzouk, Y.M., Najm, H.N., Rahn, L.A.: Stochastic spectral methods for efficient Bayesian solution of inverse problems. J. Comput. Phys. 224(2), 560–86 (2007)MathSciNetCrossRef
25.
go back to reference Marzouk, Y., Xiu, D.: A stochastic collocation approach to Bayesian inference in inverse problems. Commun. Comput. Phys. 6(4), 826–47 (2009)MathSciNetCrossRef Marzouk, Y., Xiu, D.: A stochastic collocation approach to Bayesian inference in inverse problems. Commun. Comput. Phys. 6(4), 826–47 (2009)MathSciNetCrossRef
26.
go back to reference Matérn, B.: Spatial Variation. Springer Science & Business Media (2013) Matérn, B.: Spatial Variation. Springer Science & Business Media (2013)
27.
go back to reference Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–92 (1953)CrossRef Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–92 (1953)CrossRef
28.
go back to reference Narcowich, F., Ward, J., Wendland, H.: Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Math. Comput. 74(250), 743–63 (2005)MathSciNetCrossRef Narcowich, F., Ward, J., Wendland, H.: Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Math. Comput. 74(250), 743–63 (2005)MathSciNetCrossRef
29.
go back to reference Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19(4), 1574–609 (2009)MathSciNetCrossRef Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19(4), 1574–609 (2009)MathSciNetCrossRef
30.
go back to reference Oates, C.J., Cockayne, J., Briol, F.X., Girolami, M.: Convergence rates for a class of estimators based on Stein’s method. Bernoulli 25(2), 1141–59 (2019)MathSciNetCrossRef Oates, C.J., Cockayne, J., Briol, F.X., Girolami, M.: Convergence rates for a class of estimators based on Stein’s method. Bernoulli 25(2), 1141–59 (2019)MathSciNetCrossRef
31.
go back to reference O’Gorman, P.A., Schneider, T.: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Clim. 21(15), 3815–32 (2008)CrossRef O’Gorman, P.A., Schneider, T.: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Clim. 21(15), 3815–32 (2008)CrossRef
32.
go back to reference Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.: Scikit-learn: machine learning in Python. J. Mach. Learn Res. 12, 2825–30 (2011)MathSciNet Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.: Scikit-learn: machine learning in Python. J. Mach. Learn Res. 12, 2825–30 (2011)MathSciNet
33.
go back to reference Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., McRae, A.T., Bercea, G.T., Markall, G.R., Kelly, P.H.: Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Softw. (TOMS) 43(3), 1–27 (2016)MathSciNetCrossRef Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., McRae, A.T., Bercea, G.T., Markall, G.R., Kelly, P.H.: Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Softw. (TOMS) 43(3), 1–27 (2016)MathSciNetCrossRef
34.
go back to reference Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer (1999) Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer (1999)
35.
go back to reference Rubin, Y.: Applied Stochastic Hydrogeology. Oxford University Press (2003) Rubin, Y.: Applied Stochastic Hydrogeology. Oxford University Press (2003)
36.
go back to reference Schneider, T.: Earth system Modeling 2.0: toward data-informed climate models with quantified uncertainties. Bull. Am. Phys. Soc. 65 (2020) Schneider, T.: Earth system Modeling 2.0: toward data-informed climate models with quantified uncertainties. Bull. Am. Phys. Soc. 65 (2020)
37.
go back to reference Scheuerer, M., Schaback, R., Schlather, M.: Interpolation of spatial data-A stochastic or a deterministic problem? Eur. J. Appl. Math. 24(4), 601–29 (2013)MathSciNetCrossRef Scheuerer, M., Schaback, R., Schlather, M.: Interpolation of spatial data-A stochastic or a deterministic problem? Eur. J. Appl. Math. 24(4), 601–29 (2013)MathSciNetCrossRef
38.
go back to reference Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press (2002) Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press (2002)
39.
go back to reference Sinsbeck, M., Nowak, W.: Sequential design of computer experiments for the solution of Bayesian inverse problems. SIAM/ASA J. Uncertainty Quantification 5(1), 640–64 (2017)MathSciNetCrossRef Sinsbeck, M., Nowak, W.: Sequential design of computer experiments for the solution of Bayesian inverse problems. SIAM/ASA J. Uncertainty Quantification 5(1), 640–64 (2017)MathSciNetCrossRef
41.
go back to reference Stuart, A., Teckentrup, A.: Posterior consistency for Gaussian process approximations of Bayesian posterior distributions. Math. Comput. 87(310), 721–53 (2018)MathSciNetCrossRef Stuart, A., Teckentrup, A.: Posterior consistency for Gaussian process approximations of Bayesian posterior distributions. Math. Comput. 87(310), 721–53 (2018)MathSciNetCrossRef
42.
go back to reference Teckentrup, A.L.: Convergence of Gaussian process regression with estimated hyper-parameters and applications in Bayesian inverse problems. SIAM/ASA J. Uncertainty Quantification 8(4), 1310–37 (2020)MathSciNetCrossRef Teckentrup, A.L.: Convergence of Gaussian process regression with estimated hyper-parameters and applications in Bayesian inverse problems. SIAM/ASA J. Uncertainty Quantification 8(4), 1310–37 (2020)MathSciNetCrossRef
43.
go back to reference Wendland, H.: Scattered Data Approximation. Cambridge University Press (2004) Wendland, H.: Scattered Data Approximation. Cambridge University Press (2004)
44.
go back to reference Williams, C.K., Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press (2006) Williams, C.K., Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press (2006)
45.
go back to reference Wynne, G., Briol, F.X., Girolami, M.: Convergence guarantees for Gaussian process means with misspecified likelihoods and smoothness. J. Mach. Learn. Res. 22(1), 5468–507 (2021)MathSciNet Wynne, G., Briol, F.X., Girolami, M.: Convergence guarantees for Gaussian process means with misspecified likelihoods and smoothness. J. Mach. Learn. Res. 22(1), 5468–507 (2021)MathSciNet
46.
go back to reference Zhang, D.: Stochastic Methods for Flow in Porous Media: Coping with Uncertainties. Elsevier (2001) Zhang, D.: Stochastic Methods for Flow in Porous Media: Coping with Uncertainties. Elsevier (2001)
47.
go back to reference Zhou, Y., Johansen, A.M., Aston, J.A.: Toward automatic model comparison: an adaptive sequential Monte Carlo approach. J. Comput. Graph. Stat. 25(3), 701–26 (2016)MathSciNetCrossRef Zhou, Y., Johansen, A.M., Aston, J.A.: Toward automatic model comparison: an adaptive sequential Monte Carlo approach. J. Comput. Graph. Stat. 25(3), 701–26 (2016)MathSciNetCrossRef
Metadata
Title
Introduction to Gaussian Process Regression in Bayesian Inverse Problems, with New Results on Experimental Design for Weighted Error Measures
Authors
Tapio Helin
Andrew M. Stuart
Aretha L. Teckentrup
Konstantinos C. Zygalakis
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_3

Premium Partner