Skip to main content
Top

2016 | OriginalPaper | Chapter

4. Introduction to Light–Particle Interactions

Authors : Renat R. Letfullin, Thomas F. George

Published in: Computational Nanomedicine and Nanotechnology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the previous chapter, we introduced targeted photothermal therapy of cancer, which combines molecular targeting mechanisms with the unique light absorption properties of nanoparticles to deliver heat and treat diseases at a subcellular level. To understand how photothermal therapies like nanophotothermolysis and nanophotohyperthermia could be useful, it is important to understand how radiation interacts with nanoparticles. This chapter models the light absorption properties of nanoparticles in the X-ray, optical, and RF ranges of the spectrum. To find the optimal wavelength of radiation and optimal size range of nanoparticles for effective heating/activating of the nanoparticles, we use an extended Lorentz–Mie diffraction theory, taking into account the plasmon-resonance absorption effect observed in metal nanoparticles. This chapter contains material adapted from our publications listed at the end of the chapter. The detailed list of references and reviews on a given topic of this chapter can be found in those original papers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference R.R. Letfullin, T.F. George, Plasmonic nanomaterials in nanomedicine, in Springer Handbook of Nanomaterials, ed. by R. Vajtai (Springer, Berlin, 2013), pp. 1063–1097CrossRef R.R. Letfullin, T.F. George, Plasmonic nanomaterials in nanomedicine, in Springer Handbook of Nanomaterials, ed. by R. Vajtai (Springer, Berlin, 2013), pp. 1063–1097CrossRef
2.
go back to reference R.R. Letfullin, C.E.W. Rice, T.F. George, X-ray optics of gold nanoparticles. Appl. Opt. 53, 7208–7214 (2014)CrossRef R.R. Letfullin, C.E.W. Rice, T.F. George, X-ray optics of gold nanoparticles. Appl. Opt. 53, 7208–7214 (2014)CrossRef
3.
go back to reference J.M. Boone, J.A. Seibert, An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV. Med. Phys. 24, 1661–1670 (1997)CrossRef J.M. Boone, J.A. Seibert, An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV. Med. Phys. 24, 1661–1670 (1997)CrossRef
4.
go back to reference E.M. Gullikson, “Atomic scattering factors”, Sect. 1.7, in X-Ray Data Booklet, ed. by A.C. Thompson (Lawrence Berkeley National Laboratory, Berkeley, 2009), pp. 44–52 E.M. Gullikson, “Atomic scattering factors”, Sect. 1.7, in X-Ray Data Booklet, ed. by A.C. Thompson (Lawrence Berkeley National Laboratory, Berkeley, 2009), pp. 44–52
5.
go back to reference C.T. Chantler, Theoretical form factor, attenuation, and scattering tabulation for Z = 1-92 from E = 1-10 eV to E = 0.4-1.0 MeV. J. Phys. Chem. Ref. Data 24, 71 (1995)CrossRef C.T. Chantler, Theoretical form factor, attenuation, and scattering tabulation for Z = 1-92 from E = 1-10 eV to E = 0.4-1.0 MeV. J. Phys. Chem. Ref. Data 24, 71 (1995)CrossRef
6.
go back to reference P.P. Kane, L. Kissel, R.H. Pratt, S.C. Roy, Elastic scattering of γ-rays and x-rays by atoms. Phys. Rep. 140, 75–159 (1986)CrossRef P.P. Kane, L. Kissel, R.H. Pratt, S.C. Roy, Elastic scattering of γ-rays and x-rays by atoms. Phys. Rep. 140, 75–159 (1986)CrossRef
7.
go back to reference R.R. Letfullin, T.F. George, G.C. Duree, B.M. Bollinger, Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches, Adv. Opt. Technol. 2008, ID 251718/1-8 (2008). R.R. Letfullin, T.F. George, G.C. Duree, B.M. Bollinger, Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches, Adv. Opt. Technol. 2008, ID 251718/1-8 (2008).
8.
go back to reference J. Siewerdsen, A. Waese, D. Moseley, S. Richard, D. Jaffray, Spektr: a computational tool for x-ray spectral analysis and imaging system optimization. Med. Phys. 31, 3057–3067 (2004)CrossRef J. Siewerdsen, A. Waese, D. Moseley, S. Richard, D. Jaffray, Spektr: a computational tool for x-ray spectral analysis and imaging system optimization. Med. Phys. 31, 3057–3067 (2004)CrossRef
9.
go back to reference B.J. MacGowan, L.B. Da Silva, D.J. Fields, C.J. Keane, J.A. Koch, R.A. London, D.L. Matthews, S. Maxon, S. Mrowka, A.L. Osterheld, J.H. Scofield, G. Shimkaveg, J.E. Trebes, R.S. Walling, Short wavelength x-ray laser research at the Lawrence Livermore National Laboratory. Phys. Fluids B 4, 2326–2337 (1992)CrossRef B.J. MacGowan, L.B. Da Silva, D.J. Fields, C.J. Keane, J.A. Koch, R.A. London, D.L. Matthews, S. Maxon, S. Mrowka, A.L. Osterheld, J.H. Scofield, G. Shimkaveg, J.E. Trebes, R.S. Walling, Short wavelength x-ray laser research at the Lawrence Livermore National Laboratory. Phys. Fluids B 4, 2326–2337 (1992)CrossRef
10.
go back to reference J. Nilsen, B.J. MacGowan, L.B. Da Silva, J.C. Moreno, Prepulse technique for producing low-Z Ne-like x-ray lasers. Phys. Rev. A 48, 4682–4685 (1993)CrossRef J. Nilsen, B.J. MacGowan, L.B. Da Silva, J.C. Moreno, Prepulse technique for producing low-Z Ne-like x-ray lasers. Phys. Rev. A 48, 4682–4685 (1993)CrossRef
11.
go back to reference R.R. Letfullin, A.R. Letfullin, T.F. George, Absorption efficiency and heating kinetics of nanoparticles in the RF range for selective nanotherapy of cancer. Nanomed.: Nanotechnol. Biol. Med. 11, 413–420 (2015) R.R. Letfullin, A.R. Letfullin, T.F. George, Absorption efficiency and heating kinetics of nanoparticles in the RF range for selective nanotherapy of cancer. Nanomed.: Nanotechnol. Biol. Med. 11, 413–420 (2015)
12.
go back to reference G.W. Hanson, R.C. Monreal, S.P. Apell, Electromagnetic absorption mechanisms in metal nanospheres: bulk and surface effects in radiofrequency-terahertz heating of nanoparticles. J. Appl. Phys. 109, 124306/1-6 (2011)CrossRef G.W. Hanson, R.C. Monreal, S.P. Apell, Electromagnetic absorption mechanisms in metal nanospheres: bulk and surface effects in radiofrequency-terahertz heating of nanoparticles. J. Appl. Phys. 109, 124306/1-6 (2011)CrossRef
13.
go back to reference C.H. Moran, S.M. Wainerdi, T.K. Cherukuri, C. Kittrell, B.J. Wiley, N.W. Nicholas, Size-dependent Joule heating of gold nanoparticles using capacitively coupled radiofrequency fields. Nano Res. 2, 400–405 (2009)CrossRef C.H. Moran, S.M. Wainerdi, T.K. Cherukuri, C. Kittrell, B.J. Wiley, N.W. Nicholas, Size-dependent Joule heating of gold nanoparticles using capacitively coupled radiofrequency fields. Nano Res. 2, 400–405 (2009)CrossRef
14.
go back to reference H.M. Gach, A. Balachandrasekarana, T. Naira, RF hyperthermia using conductive nanoparticles. Proc. Soc. Photo Opt. Instrum. Eng. 7548, 41/1–41/11 (2010) H.M. Gach, A. Balachandrasekarana, T. Naira, RF hyperthermia using conductive nanoparticles. Proc. Soc. Photo Opt. Instrum. Eng. 7548, 41/1–41/11 (2010)
15.
go back to reference E.S. Glazer, C. Zhu, K.L. Massey, C.S. Thompson, W.D. Kaluarachchi, A.N. Hamir, S.A. Curley, Noninvasive radiofrequency field destruction of pancreatic adenocarcinoma xenografts treated with targeted gold nanoparticles. Clin. Cancer Res. 16, 5712–5721 (2010)CrossRef E.S. Glazer, C. Zhu, K.L. Massey, C.S. Thompson, W.D. Kaluarachchi, A.N. Hamir, S.A. Curley, Noninvasive radiofrequency field destruction of pancreatic adenocarcinoma xenografts treated with targeted gold nanoparticles. Clin. Cancer Res. 16, 5712–5721 (2010)CrossRef
16.
go back to reference M. Raoof, S.J. Corr, W.D. Kaluarachchi, K.L. Massey, K. Briggs, C. Zhu, M.A. Cheney, L.J. Wilson, S.A. Curley, Stability of antibody-conjugated gold nanoparticles in the endolysosomal nanoenvironment: implications for noninvasive radiofrequency-based cancer therapy. Nanomedicine 8, 1096–1105 (2012) M. Raoof, S.J. Corr, W.D. Kaluarachchi, K.L. Massey, K. Briggs, C. Zhu, M.A. Cheney, L.J. Wilson, S.A. Curley, Stability of antibody-conjugated gold nanoparticles in the endolysosomal nanoenvironment: implications for noninvasive radiofrequency-based cancer therapy. Nanomedicine 8, 1096–1105 (2012)
17.
go back to reference C.J. Gannon, C.R. Patra, R. Bhattacharya, Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J. Nanobiotechnol. 6, 1–9 (2008)CrossRef C.J. Gannon, C.R. Patra, R. Bhattacharya, Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J. Nanobiotechnol. 6, 1–9 (2008)CrossRef
18.
go back to reference D. Li, Y.S. Jung, S. Tan, H.K. Kim, E. Chory, D.A. Geller, Negligible absorption of radiofrequency radiation by colloidal gold nanoparticles. J. Colloid Interface Sci. 358, 47–53 (2011)CrossRef D. Li, Y.S. Jung, S. Tan, H.K. Kim, E. Chory, D.A. Geller, Negligible absorption of radiofrequency radiation by colloidal gold nanoparticles. J. Colloid Interface Sci. 358, 47–53 (2011)CrossRef
19.
go back to reference C.J. Gannon, P. Cherukuri, B.I. Yakobson, L. Cognet, J.S. Kanzius, C. Kittrell, R.B. Weisman, M. Pasquali, H.K. Schmidt, R.E. Smalley, S.A. Curley, Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110, 2654–2665 (2007)CrossRef C.J. Gannon, P. Cherukuri, B.I. Yakobson, L. Cognet, J.S. Kanzius, C. Kittrell, R.B. Weisman, M. Pasquali, H.K. Schmidt, R.E. Smalley, S.A. Curley, Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110, 2654–2665 (2007)CrossRef
Metadata
Title
Introduction to Light–Particle Interactions
Authors
Renat R. Letfullin
Thomas F. George
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-43577-0_4