Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2015 | OriginalPaper | Chapter

Introduction to Modular Forms

Author: Simon C. F. Rose

Published in: Calabi-Yau Varieties: Arithmetic, Geometry and Physics

Publisher: Springer New York

share
SHARE

Abstract

We introduce the notion of modular forms, focusing primarily on the group \(PSL_{2}\mathbb{Z}\). We further introduce quasi-modular forms, as well as discuss their relation to physics and their applications in a variety of enumerative problems. These notes are based on a lecture given at the Field’s Institute during the thematic program on Calabi-Yau Varieties: Arithmetic, Geometry, and Physics.
Footnotes
1
Note that in this double sum we should exclude the (m, n) = (0, 0) term.
 
2
This is why we choose this particular normalization.
 
3
This actually requires an extension of the notion of modularity to (a) deal with characters of the group Γ and (b) to deal with forms of half-integer wieght. However, for the case at hand (r = 8), no such generalization is needed.
 
4
Note that we are using the non-holomorphic extension of \(E_{2}(\tau )\) so that this is well-defined on \(\mathcal{M}_{\mathbb{C}}^{E}\).
 
5
There is of course the factor of q 1∕2 in the first term which does break modularity. However, we can easily include this into the definition of the function, and end up with a modular form as we desire.
 
Literature
1.
go back to reference Alim, M., Scheidegger, E.: Topological strings on elliptic fibrations. Commun. Number Theory Phys. 8(4), 729–800 (2014) MathSciNetCrossRef Alim, M., Scheidegger, E.: Topological strings on elliptic fibrations. Commun. Number Theory Phys. 8(4), 729–800 (2014) MathSciNetCrossRef
3.
go back to reference Borcherds, R.E.: The Gross-Kohnen-Zagier theorem in higher dimensions. Duke Math. J. 97(2), 219–233 (1999). MR 1682249 (2000f:11052) Borcherds, R.E.: The Gross-Kohnen-Zagier theorem in higher dimensions. Duke Math. J. 97(2), 219–233 (1999). MR 1682249 (2000f:11052)
4.
go back to reference Bryan, J., Graber, T.: The crepant resolution conjecture. In: Algebraic geometry—Seattle 2005. Part 1. Proceedings of Symposia in Pure Mathematics, vol. 80, pp. 23–42. American Mathematical Society, Providence (2009). MR MR2483931 (2009m:14083) Bryan, J., Graber, T.: The crepant resolution conjecture. In: Algebraic geometry—Seattle 2005. Part 1. Proceedings of Symposia in Pure Mathematics, vol. 80, pp. 23–42. American Mathematical Society, Providence (2009). MR MR2483931 (2009m:14083)
5.
go back to reference Bryan, J., Leung, N.C.: Generating functions for the number of curves on abelian surfaces. Duke Math. J. 99(2), 311–328 (1999). MR MR1708022 (2000m:14052) Bryan, J., Leung, N.C.: Generating functions for the number of curves on abelian surfaces. Duke Math. J. 99(2), 311–328 (1999). MR MR1708022 (2000m:14052)
6.
go back to reference Bryan, J., Leung, N.C.: The enumerative geometry of K3 surfaces and modular forms. J. Am. Math. Soc. 13(2), 371–410 (electronic) (2000). MR MR1750955 (2001i:14071) Bryan, J., Leung, N.C.: The enumerative geometry of K3 surfaces and modular forms. J. Am. Math. Soc. 13(2), 371–410 (electronic) (2000). MR MR1750955 (2001i:14071)
7.
go back to reference Cavalieri, R., Johnson, P., Markwig, H.: Tropical Hurwitz numbers. J. Algebr. Comb. 32(2), 241–265 (2010). MR 2661417 (2011m:14089) Cavalieri, R., Johnson, P., Markwig, H.: Tropical Hurwitz numbers. J. Algebr. Comb. 32(2), 241–265 (2010). MR 2661417 (2011m:14089)
8.
go back to reference Diamond, F.: A First Course in Modular Forms. Springer, New York (2005) MATH Diamond, F.: A First Course in Modular Forms. Springer, New York (2005) MATH
9.
go back to reference Dijkgraaf, R.: Mirror symmetry and elliptic curves. In: The Moduli Space of Curves, Texel Island, 1994. Progress in Mathematics, vol. 129, pp. 149–163. Birkhäuser, Boston (1995). MR 1363055 (96m:14072) Dijkgraaf, R.: Mirror symmetry and elliptic curves. In: The Moduli Space of Curves, Texel Island, 1994. Progress in Mathematics, vol. 129, pp. 149–163. Birkhäuser, Boston (1995). MR 1363055 (96m:14072)
10.
go back to reference Göttsche, L.: A conjectural generating function for numbers of curves on surfaces. Commun. Math. Phys. 196(3), 523–533 (1998). MR 1645204 (2000f:14085) Göttsche, L.: A conjectural generating function for numbers of curves on surfaces. Commun. Math. Phys. 196(3), 523–533 (1998). MR 1645204 (2000f:14085)
11.
go back to reference Gunning, R.C.: Lectures on Modular Forms. Annals of Mathematics Studies, vols. 48–49. Princeton University Press, Princeton (1962) Gunning, R.C.: Lectures on Modular Forms. Annals of Mathematics Studies, vols. 48–49. Princeton University Press, Princeton (1962)
12.
go back to reference Kaneko, M., Zagier, D.: A generalized Jacobi theta function and quasimodular forms. In: The Moduli Space of Curves, Texel Island, 1994. Progress in Mathematics, vol. 129, pp. 165–172. Birkhäuser, Boston (1995). MR 1363056 (96m:11030) Kaneko, M., Zagier, D.: A generalized Jacobi theta function and quasimodular forms. In: The Moduli Space of Curves, Texel Island, 1994. Progress in Mathematics, vol. 129, pp. 165–172. Birkhäuser, Boston (1995). MR 1363056 (96m:11030)
13.
go back to reference Klemm, A., Maulik, D., Pandharipande, R., Scheidegger, E.: Noether-Lefschetz theory and the Yau-Zaslow conjecture. J. Am. Math. Soc. 23(4), 1013–1040 (2010). MR 2669707 (2011j:14121) Klemm, A., Maulik, D., Pandharipande, R., Scheidegger, E.: Noether-Lefschetz theory and the Yau-Zaslow conjecture. J. Am. Math. Soc. 23(4), 1013–1040 (2010). MR 2669707 (2011j:14121)
14.
go back to reference Klemm, A., Manschot, J., Wotschke, T.: Quantum geometry of elliptic Calabi-Yau manifolds. Commun. Number Theory Phys. 6(4), 849–917 (2012). MR 3068410 Klemm, A., Manschot, J., Wotschke, T.: Quantum geometry of elliptic Calabi-Yau manifolds. Commun. Number Theory Phys. 6(4), 849–917 (2012). MR 3068410
15.
go back to reference Klemm, A., Mayr, P., Vafa, C.: BPS states of exceptional non-critical strings. Nucl. Phys. B Proc. Suppl. 58, 177–194 (1997). Advanced quantum field theory (La Londe les Maures, 1996). MR 1486340 (99a:81145) Klemm, A., Mayr, P., Vafa, C.: BPS states of exceptional non-critical strings. Nucl. Phys. B Proc. Suppl. 58, 177–194 (1997). Advanced quantum field theory (La Londe les Maures, 1996). MR 1486340 (99a:81145)
16.
go back to reference Rose, S.: Counting hyperelliptic curves on abelian surfaces with quasi-modular forms. Ph.D. thesis, University of British Columbia (2012) Rose, S.: Counting hyperelliptic curves on abelian surfaces with quasi-modular forms. Ph.D. thesis, University of British Columbia (2012)
17.
go back to reference Rose, S., Yui, N.: Elliptic Calabi-Yau Threefolds over a Del Pezzo Surface. In: To be published in Proceedings of the MPIM (2013) Rose, S., Yui, N.: Elliptic Calabi-Yau Threefolds over a Del Pezzo Surface. In: To be published in Proceedings of the MPIM (2013)
18.
go back to reference Roth, M., Yui, N.: Mirror symmetry for elliptic curves: the B-model (bosonic) counting Roth, M., Yui, N.: Mirror symmetry for elliptic curves: the B-model (bosonic) counting
19.
go back to reference Roth, M., Yui, N.: Mirror symmetry for elliptic curves: the A-model (fermionic) counting. In: Carey, A.L. (ed.) Motives, Quantum Field Theory, and Pseudodifferential Operators. Clay Mathematics Proceedings, vol. 12, pp. 245–283. American Mathematical Society, Providence (2010). MR 2762533 (2012d:14094) Roth, M., Yui, N.: Mirror symmetry for elliptic curves: the A-model (fermionic) counting. In: Carey, A.L. (ed.) Motives, Quantum Field Theory, and Pseudodifferential Operators. Clay Mathematics Proceedings, vol. 12, pp. 245–283. American Mathematical Society, Providence (2010). MR 2762533 (2012d:14094)
20.
go back to reference Yau, S.-T., Zaslow, E.: BPS states, string duality, and nodal curves on K3. Nucl. Phys. B 471(3), 503–512 (1996). MR MR1398633 (97e:14066) Yau, S.-T., Zaslow, E.: BPS states, string duality, and nodal curves on K3. Nucl. Phys. B 471(3), 503–512 (1996). MR MR1398633 (97e:14066)
Metadata
Title
Introduction to Modular Forms
Author
Simon C. F. Rose
Copyright Year
2015
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2830-9_12

Premium Partner