Skip to main content
Top

2017 | OriginalPaper | Chapter

2. Introduction to Nonlinear Programming

Authors : Thomas J. Böhme, Benjamin Frank

Published in: Hybrid Systems, Optimal Control and Hybrid Vehicles

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter provides a short introduction into nonlinear programming. It gives the reader a deeper insight into sequential quadratic programming methods and the sensitivity analysis of constrained nonlinear minimization problems, because these tools are fundamental to the optimal control algorithms proposed in the subsequent chapters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Anitescu M (2002) On the rate of convergence of sequential quadratic programming with nondifferentiable exact penalty function in the presence of constraint degeneracy. Math Program 92(2):359–386MathSciNetCrossRefMATH Anitescu M (2002) On the rate of convergence of sequential quadratic programming with nondifferentiable exact penalty function in the presence of constraint degeneracy. Math Program 92(2):359–386MathSciNetCrossRefMATH
2.
4.
go back to reference Avriel M (2003) Nonlinear programming: analysis and methods. Courier Corporation Avriel M (2003) Nonlinear programming: analysis and methods. Courier Corporation
5.
go back to reference Beltracchi TJ, Gabriele GA (1988) An investigation of new methods for estimating parameter sensitivities. Technical Report NASA-CR-183195, NASA Beltracchi TJ, Gabriele GA (1988) An investigation of new methods for estimating parameter sensitivities. Technical Report NASA-CR-183195, NASA
6.
go back to reference Bertsekas DP (2014) Constrained optimization and Lagrange multiplier methods. Academic press Bertsekas DP (2014) Constrained optimization and Lagrange multiplier methods. Academic press
7.
go back to reference Betts JT (2010) Practical methods for optimal control and estimation using nonlinear programming, 2nd edn. Society for industrial and applied mathematics. doi:10.1137/1.9780898718577 Betts JT (2010) Practical methods for optimal control and estimation using nonlinear programming, 2nd edn. Society for industrial and applied mathematics. doi:10.​1137/​1.​9780898718577
8.
go back to reference Boggs PT, Tolle JW (1995) Sequential quadratic programming. Acta Numer 4:1–51 Boggs PT, Tolle JW (1995) Sequential quadratic programming. Acta Numer 4:1–51
9.
go back to reference Boggs PT, Tolle JW, Wang P (1982) On the local convergence of quasi-newton methods for constrained optimization. SIAM J Control Optim 20(2):161–171MathSciNetCrossRefMATH Boggs PT, Tolle JW, Wang P (1982) On the local convergence of quasi-newton methods for constrained optimization. SIAM J Control Optim 20(2):161–171MathSciNetCrossRefMATH
10.
go back to reference Büskens C (1998) Optimierungsmethoden und Sensitivitätsanalyse für optimale Steuerprozesse mit Steuer- und Zustandsbeschränkungen. PhD thesis, Universität Münster Büskens C (1998) Optimierungsmethoden und Sensitivitätsanalyse für optimale Steuerprozesse mit Steuer- und Zustandsbeschränkungen. PhD thesis, Universität Münster
11.
go back to reference Büskens C (2002) Real-time optimization and real-time optimal control of parameter-perturbed problems. Universität Bayreuth, Habilschrift Büskens C (2002) Real-time optimization and real-time optimal control of parameter-perturbed problems. Universität Bayreuth, Habilschrift
12.
go back to reference Büskens C, Maurer H (2001) Sensitivity analysis and real-time optimization of parametric nonlinear programming problems. In: Online optimization of large scale systems. Springer, pp 3–16 Büskens C, Maurer H (2001) Sensitivity analysis and real-time optimization of parametric nonlinear programming problems. In: Online optimization of large scale systems. Springer, pp 3–16
13.
go back to reference Byrd R, Tapia R, Zhang Y (1992) An SQP augmented lagrangian BFGS algorithm for constrained optimization. SIAM J Optim 2(2):210–241MathSciNetCrossRefMATH Byrd R, Tapia R, Zhang Y (1992) An SQP augmented lagrangian BFGS algorithm for constrained optimization. SIAM J Optim 2(2):210–241MathSciNetCrossRefMATH
14.
go back to reference Chamberlain R, Powell M, Lemarechal C, Pedersen H (1982) The watchdog technique for forcing convergence in algorithms for constrained optimization. In: Algorithms for constrained minimization of smooth nonlinear functions. Springer, pp 1–17 Chamberlain R, Powell M, Lemarechal C, Pedersen H (1982) The watchdog technique for forcing convergence in algorithms for constrained optimization. In: Algorithms for constrained minimization of smooth nonlinear functions. Springer, pp 1–17
15.
go back to reference Conn A, Gould N, Toint P (2000) Trust region methods. Society for industrial and applied mathematics, MPS-SIAM series on optimization Conn A, Gould N, Toint P (2000) Trust region methods. Society for industrial and applied mathematics, MPS-SIAM series on optimization
16.
go back to reference Coope I (1985) The Maratos effect in sequential quadratic programming algorithms using the l1 exact penalty function. Research report (University of Waterloo. Faculty of Mathematics), University of Waterloo, Computer Science Department Coope I (1985) The Maratos effect in sequential quadratic programming algorithms using the l1 exact penalty function. Research report (University of Waterloo. Faculty of Mathematics), University of Waterloo, Computer Science Department
17.
go back to reference Davidon WC (1966) Variable metric method for minimization. [in Fortran for IBM 704]. Technical report, Argonne National Lab., IL (USA) Davidon WC (1966) Variable metric method for minimization. [in Fortran for IBM 704]. Technical report, Argonne National Lab., IL (USA)
18.
go back to reference Davis L (1991) The handbook of genetic algorithms. Van Nostrand Reingold, New York Davis L (1991) The handbook of genetic algorithms. Van Nostrand Reingold, New York
19.
go back to reference Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197CrossRef Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197CrossRef
20.
go back to reference Dennis J, Moré JJ (1974) A characterization of superlinear convergence and its application to Quasi-Newton methods. Math Comput 28(126):549–560MathSciNetCrossRefMATH Dennis J, Moré JJ (1974) A characterization of superlinear convergence and its application to Quasi-Newton methods. Math Comput 28(126):549–560MathSciNetCrossRefMATH
21.
go back to reference Dennis Jr JE, Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations, vol 16. Siam Dennis Jr JE, Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations, vol 16. Siam
22.
23.
go back to reference Eldersveld SK (1992) Large-scale sequential quadratic programming algorithms. Technical Report SOL 92–4, DTIC Document Eldersveld SK (1992) Large-scale sequential quadratic programming algorithms. Technical Report SOL 92–4, DTIC Document
25.
go back to reference Ferreira OP, Svaiter BF (2012) Kantorovich’s theorem on Newton’s method. ArXiv e-prints 1209:5704 Ferreira OP, Svaiter BF (2012) Kantorovich’s theorem on Newton’s method. ArXiv e-prints 1209:5704
26.
go back to reference Fiacco AV (1983) Introduction to sensitivity and stability analysis in nonlinear programming. Elsevier Fiacco AV (1983) Introduction to sensitivity and stability analysis in nonlinear programming. Elsevier
27.
go back to reference Fiacco AV, McCormick GP (1990) Nonlinear programming: sequential unconstrained minimization techniques, vol 4. Siam Fiacco AV, McCormick GP (1990) Nonlinear programming: sequential unconstrained minimization techniques, vol 4. Siam
28.
go back to reference Fletcher R (1982) Second order corrections for non-differentiable optimization. Springer Fletcher R (1982) Second order corrections for non-differentiable optimization. Springer
29.
go back to reference Fletcher R (2013) Practical methods of optimization. Wiley Fletcher R (2013) Practical methods of optimization. Wiley
32.
go back to reference Fletcher R, Leyffer S, Toint PL, et al. (2006) A brief history of filter methods. Preprint ANL/MCS-P1372-0906. Argonne National Laboratory, Mathematics and Computer Science Division Fletcher R, Leyffer S, Toint PL, et al. (2006) A brief history of filter methods. Preprint ANL/MCS-P1372-0906. Argonne National Laboratory, Mathematics and Computer Science Division
35.
go back to reference Gill PE, Wong E (2012) Sequential quadratic programming methods. In: Lee J, Leyffer S (eds) Mixed Integer nonlinear programming, The IMA Volumes in Mathematics and its Applications, vol 154. Springer, New York, pp 147–224. doi:10.1007/978-1-4614-1927-3_6 Gill PE, Wong E (2012) Sequential quadratic programming methods. In: Lee J, Leyffer S (eds) Mixed Integer nonlinear programming, The IMA Volumes in Mathematics and its Applications, vol 154. Springer, New York, pp 147–224. doi:10.​1007/​978-1-4614-1927-3_​6
36.
go back to reference Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic press Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic press
37.
go back to reference Gill PE, Murray W, Saunders MA, Wright MH (1986) Some theoretical properties of an augmented Lagrangian merit function. Technical Report SOL 86-6R, Stanford Univ., CA (USA). Systems Optimization Lab Gill PE, Murray W, Saunders MA, Wright MH (1986) Some theoretical properties of an augmented Lagrangian merit function. Technical Report SOL 86-6R, Stanford Univ., CA (USA). Systems Optimization Lab
38.
go back to reference Giorgi G, Kjeldsen TH (2014) A historical view of nonlinear programming: traces and emergence. In: Traces and emergence of nonlinear programming. Springer, pp 1–43 Giorgi G, Kjeldsen TH (2014) A historical view of nonlinear programming: traces and emergence. In: Traces and emergence of nonlinear programming. Springer, pp 1–43
39.
go back to reference Goldfarb D, Idnani A (1983) A numerically stable dual method for solving strictly convex quadratic programs. Math program 27(1):1–33MathSciNetCrossRefMATH Goldfarb D, Idnani A (1983) A numerically stable dual method for solving strictly convex quadratic programs. Math program 27(1):1–33MathSciNetCrossRefMATH
41.
go back to reference Gould NI, Toint PL (2000) SQP methods for large-scale nonlinear programming. Springer Gould NI, Toint PL (2000) SQP methods for large-scale nonlinear programming. Springer
42.
go back to reference Hager WW, Zhang H (2005) A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J Optim 16(1):170–192MathSciNetCrossRefMATH Hager WW, Zhang H (2005) A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J Optim 16(1):170–192MathSciNetCrossRefMATH
43.
go back to reference Han SP (1976) Superlinearly convergent variable metric algorithms for general nonlinear programming problems. Math Program 11(1):263–282MathSciNetCrossRefMATH Han SP (1976) Superlinearly convergent variable metric algorithms for general nonlinear programming problems. Math Program 11(1):263–282MathSciNetCrossRefMATH
44.
go back to reference Johannesson L, Murgovski N, Ebbesen S, Egardt B, Gelso E, Hellgren J (2013) Including a battery state of health model in the HEV component sizing and optimal control problem. Proceedings of the 7th IFAC symposium on advances in automotive control. Tokyo, Japan, pp 388–393 Johannesson L, Murgovski N, Ebbesen S, Egardt B, Gelso E, Hellgren J (2013) Including a battery state of health model in the HEV component sizing and optimal control problem. Proceedings of the 7th IFAC symposium on advances in automotive control. Tokyo, Japan, pp 388–393
45.
go back to reference John F (2014) Extremum problems with inequalities as subsidiary conditions. In: traces and emergence of nonlinear programming. Springer, pp 197–215 John F (2014) Extremum problems with inequalities as subsidiary conditions. In: traces and emergence of nonlinear programming. Springer, pp 197–215
46.
go back to reference Kantorovich L (1948) Functional analysis and applied mathematics. Uspekhi Mat Nauk 3(6(28)):89–185 Kantorovich L (1948) Functional analysis and applied mathematics. Uspekhi Mat Nauk 3(6(28)):89–185
47.
go back to reference Kantorovich L, Akilov G (1964) Functional analysis in normed spaces. International series of monographs in pure and applied mathematics, Pergamon Press; [distributed in the Western Hemisphere by Macmillan, New York] Kantorovich L, Akilov G (1964) Functional analysis in normed spaces. International series of monographs in pure and applied mathematics, Pergamon Press; [distributed in the Western Hemisphere by Macmillan, New York]
48.
go back to reference Karush W (2014) Minima of functions of several variables with inequalities as side conditions. Springer Karush W (2014) Minima of functions of several variables with inequalities as side conditions. Springer
49.
go back to reference Kuhn HW, Tucker AW (2014) Nonlinear programming: a historical view. In: traces and emergence of nonlinear programming. Springer, pp 393–414 Kuhn HW, Tucker AW (2014) Nonlinear programming: a historical view. In: traces and emergence of nonlinear programming. Springer, pp 393–414
50.
go back to reference Lemaréchal C (1981) A view of line-searches. In: Optimization and optimal control. Springer, pp 59–78 Lemaréchal C (1981) A view of line-searches. In: Optimization and optimal control. Springer, pp 59–78
51.
go back to reference Mangasarian OL (1993) Nonlinear programming, vol 10. siam Mangasarian OL (1993) Nonlinear programming, vol 10. siam
52.
go back to reference Maratos N (1978) Exact penalty function algorithms for finite dimensional and control optimization problems. PhD thesis, Imperial College London (University of London) Maratos N (1978) Exact penalty function algorithms for finite dimensional and control optimization problems. PhD thesis, Imperial College London (University of London)
53.
go back to reference Mayne DQ, Polak E (1982) A surperlinearly convergent algorithm for constrained optimization problems. In: Buckley A, Goffin JL (eds) Algorithms for constrained minimization of smooth nonlinear functions, mathematical programming studies, vol 16, Springer, Berlin Heidelberg, pp 45–61. doi:10.1007/BFb0120947 Mayne DQ, Polak E (1982) A surperlinearly convergent algorithm for constrained optimization problems. In: Buckley A, Goffin JL (eds) Algorithms for constrained minimization of smooth nonlinear functions, mathematical programming studies, vol 16, Springer, Berlin Heidelberg, pp 45–61. doi:10.​1007/​BFb0120947
54.
go back to reference McCormick ST (1983) Optimal approximation of sparse Hessians and its equivalence to a graph coloring problem. Math Program 26(2):153–171MathSciNetCrossRefMATH McCormick ST (1983) Optimal approximation of sparse Hessians and its equivalence to a graph coloring problem. Math Program 26(2):153–171MathSciNetCrossRefMATH
56.
go back to reference Miettinen K (1999) Nonlinear multiobjective optimization. International series in operations research and management science, vol 12 Miettinen K (1999) Nonlinear multiobjective optimization. International series in operations research and management science, vol 12
58.
go back to reference Moser J (ed) (1985) Fritz John collected papers, vol 1. Birkhäuser-Verlag, Basel-Boston Moser J (ed) (1985) Fritz John collected papers, vol 1. Birkhäuser-Verlag, Basel-Boston
59.
go back to reference Nocedal J, Wright S (2006) Numerical optimization. Springer series in operations research and financial engineering, 2nd edn. Springer, Science+Business Nocedal J, Wright S (2006) Numerical optimization. Springer series in operations research and financial engineering, 2nd edn. Springer, Science+Business
60.
62.
go back to reference Ortega J, Rheinboldt W (2000) Iterative solution of nonlinear equations in several variables. Society for Industrial and Applied Mathematics, Classics in Applied MathematicsCrossRefMATH Ortega J, Rheinboldt W (2000) Iterative solution of nonlinear equations in several variables. Society for Industrial and Applied Mathematics, Classics in Applied MathematicsCrossRefMATH
65.
go back to reference Powell MJ (1978) The convergence of variable metric methods for non-linearly constrained optimization calculations. Nonlinear programming 3 Powell MJ (1978) The convergence of variable metric methods for non-linearly constrained optimization calculations. Nonlinear programming 3
66.
67.
go back to reference Schittkowski K (1982) On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search functions. Technical Report SOL 82–4, DTIC Document Schittkowski K (1982) On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search functions. Technical Report SOL 82–4, DTIC Document
68.
go back to reference Schittkowski K, Yuan YX (2011) Sequential quadratic programming methods. Wiley encyclopedia of operations research and management science Schittkowski K, Yuan YX (2011) Sequential quadratic programming methods. Wiley encyclopedia of operations research and management science
69.
go back to reference Seshadri A (2007) A fast elitist multi-objective genetic algorithm NSGA-II Seshadri A (2007) A fast elitist multi-objective genetic algorithm NSGA-II
70.
go back to reference Wilson RB (1963) A simplicial algorithm for concave programming. PhD thesis, Graduate School of Business Administration, George F. Baker Foundation, Harvard University Wilson RB (1963) A simplicial algorithm for concave programming. PhD thesis, Graduate School of Business Administration, George F. Baker Foundation, Harvard University
73.
go back to reference Wright S (1997) Primal-dual interior-point methods. Society for industrial and applied mathematics Wright S (1997) Primal-dual interior-point methods. Society for industrial and applied mathematics
74.
go back to reference Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol Comput 1(1):32–49CrossRef Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol Comput 1(1):32–49CrossRef
75.
go back to reference Zitzler E, Laumanns M, Bleuler S (2004) A tutorial on evolutionary multiobjective optimization. In: Metaheuristics for multiobjective optimisation. Springer, pp 3–37 Zitzler E, Laumanns M, Bleuler S (2004) A tutorial on evolutionary multiobjective optimization. In: Metaheuristics for multiobjective optimisation. Springer, pp 3–37
Metadata
Title
Introduction to Nonlinear Programming
Authors
Thomas J. Böhme
Benjamin Frank
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-51317-1_2