Skip to main content
Top
Published in:
Cover of the book

2015 | OriginalPaper | Chapter

1. Introduction to NVM Devices

Author : Panagiotis Dimitrakis, Ph.D.

Published in: Charge-Trapping Non-Volatile Memories

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Since the development of the first computer, the data storage has been a major procedure and the storage units are an intricate component of any computational machine. Data storage mainly includes the storage of the software program, the storage of data that are processed in real-time as well as the storage of information that can be recalled from the computational machine at any time or processed by another machine in a different place. For simplicity we call all these units used for software or data storage as memories. During the early years of the computer age, memories were made of many tiny magnetic cores and were as big as typical rooms in a house to store very short software programs or a few data. Magnetism was a well-known phenomenon and magnetic materials were some of the first materials having the hysteresis or the alternation between two different states depending on the magnetization direction, i.e., magnetic field up or down that is necessary for Boolean-logic devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
For years Flash and NVM are used as synonyms.
 
Literature
go back to reference Baik SJ, Choi I, Chung U-I, Moon JT (2004) Engineering on tunnel barrier and dot surface in Si nanocrystal memories. Solid State Electron 48:1461–1690CrossRef Baik SJ, Choi I, Chung U-I, Moon JT (2004) Engineering on tunnel barrier and dot surface in Si nanocrystal memories. Solid State Electron 48:1461–1690CrossRef
go back to reference Bez R, Camerlenghi E, Modelli A, Visconti A (2003) Introduction to flash memory. Proc IEEE 91(4):489–502CrossRef Bez R, Camerlenghi E, Modelli A, Visconti A (2003) Introduction to flash memory. Proc IEEE 91(4):489–502CrossRef
go back to reference Brewer JE, Gill M (2008) Nonvolatile memory technologies with emphasis on Flash. Wiley, New York, NY Brewer JE, Gill M (2008) Nonvolatile memory technologies with emphasis on Flash. Wiley, New York, NY
go back to reference Bukowski T, Simmons JH (2002) Quantum dot research: current state and future prospects. Crit Rev Solid State Mater Sci 27:119–142CrossRef Bukowski T, Simmons JH (2002) Quantum dot research: current state and future prospects. Crit Rev Solid State Mater Sci 27:119–142CrossRef
go back to reference Burghartz JN (ed) (2013) Guide to state-of-the-art electron devices. Wiley, New York, NY Burghartz JN (ed) (2013) Guide to state-of-the-art electron devices. Wiley, New York, NY
go back to reference Burr GW, Kurdi BN, Scott JC, Lam CH, Gopalakrishnan K, Shenoy RS (2008) Overview of candidate device technologies for storage-class memory. IBM J Res Dev 52:449–464CrossRef Burr GW, Kurdi BN, Scott JC, Lam CH, Gopalakrishnan K, Shenoy RS (2008) Overview of candidate device technologies for storage-class memory. IBM J Res Dev 52:449–464CrossRef
go back to reference Cappelletti P, Bez R, Cantarelli D, Fratin L (1994) Failure mechanisms of flash cell in program/erase cycling. Electron devices meeting, 1994 IEDM ‘94. Technical digest. IEEE, San Francisco, CA, pp 291–294 Cappelletti P, Bez R, Cantarelli D, Fratin L (1994) Failure mechanisms of flash cell in program/erase cycling. Electron devices meeting, 1994 IEDM ‘94. Technical digest. IEEE, San Francisco, CA, pp 291–294
go back to reference Changa T-C, Jiana F-Y, Chenc S-C, Tsaib Y-T (2011) Developments in nanocrystal memory. Mater Today 14:608–615CrossRef Changa T-C, Jiana F-Y, Chenc S-C, Tsaib Y-T (2011) Developments in nanocrystal memory. Mater Today 14:608–615CrossRef
go back to reference Clementi C, Bez R (2005) Non volatile memory technologies: floating gate concept evolution. In: Claverie A et al (eds) Materials research society symposium proceedings, vol 830. MRS, Warrendale, PA, p D1.2 Clementi C, Bez R (2005) Non volatile memory technologies: floating gate concept evolution. In: Claverie A et al (eds) Materials research society symposium proceedings, vol 830. MRS, Warrendale, PA, p D1.2
go back to reference Crippa L, Micheloni R, Motta I, Sangalli M (2008) Nonvolatile Memories: NOR vs. NAND architectures. In: Micheloni GCR (ed) Memories in wireless systems. Springer, Berlin, pp 29–53CrossRef Crippa L, Micheloni R, Motta I, Sangalli M (2008) Nonvolatile Memories: NOR vs. NAND architectures. In: Micheloni GCR (ed) Memories in wireless systems. Springer, Berlin, pp 29–53CrossRef
go back to reference Deleruyelle D, Micolaub G (2008) On the electrostatic behavior of floating nanoconductors. Solid State Electron 52:17–24CrossRef Deleruyelle D, Micolaub G (2008) On the electrostatic behavior of floating nanoconductors. Solid State Electron 52:17–24CrossRef
go back to reference Depas M, Vermeire B, Mertens P, Van Meirhaeghe R, Heyns M (1995) Determination of tunnelling parameters in ultra-thin oxide layer poly-Si/SiO2/Si structures. Solid State Electron 38:1465–1471CrossRef Depas M, Vermeire B, Mertens P, Van Meirhaeghe R, Heyns M (1995) Determination of tunnelling parameters in ultra-thin oxide layer poly-Si/SiO2/Si structures. Solid State Electron 38:1465–1471CrossRef
go back to reference Dimitrakis P, Normand P (2008) Silicon nanocrystal memories. In: Khriachtchev L (ed) Silicon nanophotonics. Pan Stanford Publishing, Singapore, pp 211–241 Dimitrakis P, Normand P (2008) Silicon nanocrystal memories. In: Khriachtchev L (ed) Silicon nanophotonics. Pan Stanford Publishing, Singapore, pp 211–241
go back to reference Dimitrakis P, Kapetanakis E et al (2003) MOS memory structures by very-low-energy-implanted Si in thin SiO2. Mater Sci Eng B 101:14–18CrossRef Dimitrakis P, Kapetanakis E et al (2003) MOS memory structures by very-low-energy-implanted Si in thin SiO2. Mater Sci Eng B 101:14–18CrossRef
go back to reference Dimitrakis P, Normand P, Ioannou-Sougleridis V, Bonafos C, Schamm-Chardon S, Benassayag G et al (2013a) Quantum dots for memory applications. Phys Status Solidi A 210:1490–1504CrossRef Dimitrakis P, Normand P, Ioannou-Sougleridis V, Bonafos C, Schamm-Chardon S, Benassayag G et al (2013a) Quantum dots for memory applications. Phys Status Solidi A 210:1490–1504CrossRef
go back to reference Dimitrakis P, Schamm-Chardon S, Bonafos C, Normand P (2013b) Nanoparticle-based memories: concept and operation principles. In: Chaughule S, Watawe SC (eds) Applications of nanoparticles. American Scientific Publishers, Valencia, CA, pp 17–43 Dimitrakis P, Schamm-Chardon S, Bonafos C, Normand P (2013b) Nanoparticle-based memories: concept and operation principles. In: Chaughule S, Watawe SC (eds) Applications of nanoparticles. American Scientific Publishers, Valencia, CA, pp 17–43
go back to reference Dorf RC (1993) The electrical engineering handbook. CRC PRESS, Boca Raton, FL Dorf RC (1993) The electrical engineering handbook. CRC PRESS, Boca Raton, FL
go back to reference Dunn C, Hefley P et al (1993) Process reliability development for nonvolatile memories. In: Proceedings of the 31st annual interantional reliability physics symposium. IEEE, Atlanta, GA, pp 133–146 Dunn C, Hefley P et al (1993) Process reliability development for nonvolatile memories. In: Proceedings of the 31st annual interantional reliability physics symposium. IEEE, Atlanta, GA, pp 133–146
go back to reference Freitas RF, Wilcke WW (2008) Storage-class memory: the next storage system technology. IBM J Res Dev 52:439–447CrossRef Freitas RF, Wilcke WW (2008) Storage-class memory: the next storage system technology. IBM J Res Dev 52:439–447CrossRef
go back to reference Frohman-Bentchkowsky D (1970) The metal-nitride-oxide-silicon (MNOS)-transistor—characteristics and applications. Proc IEEE 58:1207CrossRef Frohman-Bentchkowsky D (1970) The metal-nitride-oxide-silicon (MNOS)-transistor—characteristics and applications. Proc IEEE 58:1207CrossRef
go back to reference Fujita S, Yasuda S et al (2003) Two-terminal Si-nanocrystal memory formed between the two metal layers IEEE-NANO 2003. IEEE, New York, NY, pp 760–762 Fujita S, Yasuda S et al (2003) Two-terminal Si-nanocrystal memory formed between the two metal layers IEEE-NANO 2003. IEEE, New York, NY, pp 760–762
go back to reference Govoreanu B, Brunco DP et al (2005) Scaling down the interpoly dielectric for next generation flash memory: challenges and opportunities. Solid State Electron 49:1841–1848CrossRef Govoreanu B, Brunco DP et al (2005) Scaling down the interpoly dielectric for next generation flash memory: challenges and opportunities. Solid State Electron 49:1841–1848CrossRef
go back to reference Habrakena FHPM, Kuiper AET (1994) Silicon nitride and oxynitride films. Mater Sci Eng R Rep 12:123–175CrossRef Habrakena FHPM, Kuiper AET (1994) Silicon nitride and oxynitride films. Mater Sci Eng R Rep 12:123–175CrossRef
go back to reference Harrison P (2005) Quantum wells, wires and dots, 2nd edn. Wiley, New York, NYCrossRef Harrison P (2005) Quantum wells, wires and dots, 2nd edn. Wiley, New York, NYCrossRef
go back to reference IEEE (1999) IEEE standard definitions and characterization of floating gate semiconductor arrays. IEEE, New York, NY IEEE (1999) IEEE standard definitions and characterization of floating gate semiconductor arrays. IEEE, New York, NY
go back to reference ITRS (2013) International technology roadmap of semiconductors (Vol. emerging research devices). SIA. ITRS, New York, NY ITRS (2013) International technology roadmap of semiconductors (Vol. emerging research devices). SIA. ITRS, New York, NY
go back to reference Kim K et al (2006) Future outlook of NAND flash technology for 40 nm node and beyond. In: Proceedings of the IEEE non-volatile semiconductor memory workshop. IEEE, Monterey, pp 9–11 Kim K et al (2006) Future outlook of NAND flash technology for 40 nm node and beyond. In: Proceedings of the IEEE non-volatile semiconductor memory workshop. IEEE, Monterey, pp 9–11
go back to reference King Y-C, King T-J, Hu C (1998) MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-xGex. In: International electron devices meeting – IEDM, pp 115–118 King Y-C, King T-J, Hu C (1998) MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-xGex. In: International electron devices meeting – IEDM, pp 115–118
go back to reference Koh BH, Kan EWH et al (2005) Traps in germanium nanocrystal memory and effect on charge retention: modeling and experimental measurements. J Appl Phys 97:124305CrossRef Koh BH, Kan EWH et al (2005) Traps in germanium nanocrystal memory and effect on charge retention: modeling and experimental measurements. J Appl Phys 97:124305CrossRef
go back to reference Lai SK (2008) Flash memories: successes and challenges. IBM J Res Dev 52(4/5):529–535CrossRef Lai SK (2008) Flash memories: successes and challenges. IBM J Res Dev 52(4/5):529–535CrossRef
go back to reference Lai S-C, Lue H-T, Yang M-J, Hsieh J-Y, Wang S-Y, Wu T-B et al (2007) MA BE-SONOS: a bandgap engineered SONOS using metal gate and Al2O3 blocking layer to overcome erase saturation. In: IEEE non-volatile semiconductor memory workshop, pp 88–89 Lai S-C, Lue H-T, Yang M-J, Hsieh J-Y, Wang S-Y, Wu T-B et al (2007) MA BE-SONOS: a bandgap engineered SONOS using metal gate and Al2O3 blocking layer to overcome erase saturation. In: IEEE non-volatile semiconductor memory workshop, pp 88–89
go back to reference Lee JD, Choi J-H et al (2003a) Data retention characteristics of Sub-100 nm NAND Flash memory cells. IEEE Electron Device Lett 24(12):748CrossRef Lee JD, Choi J-H et al (2003a) Data retention characteristics of Sub-100 nm NAND Flash memory cells. IEEE Electron Device Lett 24(12):748CrossRef
go back to reference Lee JD, Choi JH, Park D, Kinam (2003) Degradation of tunnel oxide by FN current stress and its effects on data retention characteristics of 90 nm NAND Flash memory. In: Proceedings of the IRPS. IEEE, pp 497–501 Lee JD, Choi JH, Park D, Kinam (2003) Degradation of tunnel oxide by FN current stress and its effects on data retention characteristics of 90 nm NAND Flash memory. In: Proceedings of the IRPS. IEEE, pp 497–501
go back to reference Lenzlinger M, Snow E (1969) Fowler-Nordheim tunneling into thermally grown SiO2 EDM. Technical digest, vol 40. IEEE, New York, NY, pp 273–283 Lenzlinger M, Snow E (1969) Fowler-Nordheim tunneling into thermally grown SiO2 EDM. Technical digest, vol 40. IEEE, New York, NY, pp 273–283
go back to reference Lin YH, Chien CH (2007) Two-bit lanthanum oxide trapping layer nonvolatile flash memory. J Electrochem Soc 154:H619–H622CrossRef Lin YH, Chien CH (2007) Two-bit lanthanum oxide trapping layer nonvolatile flash memory. J Electrochem Soc 154:H619–H622CrossRef
go back to reference Lin SH, Chin A et al (2008) Good 150C retention and fast erase characteristics in charge-trap-engineered memory having a scaled Si3N4 layer. In: IEDM technical digest, pp 1–4 Lin SH, Chin A et al (2008) Good 150C retention and fast erase characteristics in charge-trap-engineered memory having a scaled Si3N4 layer. In: IEDM technical digest, pp 1–4
go back to reference Lue HT, Wang SY, Shih YH (2005) BE-SONOS: a bandgap engineered SONOS with excellent performance and reliability. In: IEDM technical digest electron devices meeting. IEEE, Washington, DC, pp 547–550 Lue HT, Wang SY, Shih YH (2005) BE-SONOS: a bandgap engineered SONOS with excellent performance and reliability. In: IEDM technical digest electron devices meeting. IEEE, Washington, DC, pp 547–550
go back to reference Maikap et al. (2006) Very low voltage operation of p-Si/Al2O3/HfO2/TiO2/Al2O3/Pt single quantum well flash memory devices with good retention. Proc Int Conf Solid State Devices Mater, pp 582–583 Maikap et al. (2006) Very low voltage operation of p-Si/Al2O3/HfO2/TiO2/Al2O3/Pt single quantum well flash memory devices with good retention. Proc Int Conf Solid State Devices Mater, pp 582–583
go back to reference Maikap S, Lee HY et al (2007) Charge trapping characteristics of atomic-layer-deposited HfO2 films with Al2O3 as a blocking oxide for high-density non-volatile memory device applications. Semicond Sci Technol 22:884CrossRef Maikap S, Lee HY et al (2007) Charge trapping characteristics of atomic-layer-deposited HfO2 films with Al2O3 as a blocking oxide for high-density non-volatile memory device applications. Semicond Sci Technol 22:884CrossRef
go back to reference Micheloni GC (2003) Special issue on flash technology. Proc IEEE 91(4):483–488CrossRef Micheloni GC (2003) Special issue on flash technology. Proc IEEE 91(4):483–488CrossRef
go back to reference Micheloni R, Crippa L, Marelli A (2010) Inside NAND flash memories. Springer, HeidelbergCrossRef Micheloni R, Crippa L, Marelli A (2010) Inside NAND flash memories. Springer, HeidelbergCrossRef
go back to reference Modelli A (1999) Reliability of thin dielectrics for nonvolatile applications. Microelectron Eng 48:403–408CrossRef Modelli A (1999) Reliability of thin dielectrics for nonvolatile applications. Microelectron Eng 48:403–408CrossRef
go back to reference Ng KK (1995) Complete guide to semiconductor devices, Internationalth edn. McGraw-Hill, New York, NY Ng KK (1995) Complete guide to semiconductor devices, Internationalth edn. McGraw-Hill, New York, NY
go back to reference Roizin Y (2007) Microelectronics: material, science, characterization and application. In: Baklanov MGM (ed) Dielectric films for advanced microelectronics. Wiley, New York, NY Roizin Y (2007) Microelectronics: material, science, characterization and application. In: Baklanov MGM (ed) Dielectric films for advanced microelectronics. Wiley, New York, NY
go back to reference Salvo B (2009) Silicon non-volatile memories: paths of innovation. Wiley-ISTE, New York, NYCrossRef Salvo B (2009) Silicon non-volatile memories: paths of innovation. Wiley-ISTE, New York, NYCrossRef
go back to reference Shen RS et al (2000) Flash memories. In: Chen W-K (ed) The VLSI handbook. CRC Press LLC, Boca Raton, FL Shen RS et al (2000) Flash memories. In: Chen W-K (ed) The VLSI handbook. CRC Press LLC, Boca Raton, FL
go back to reference Shi Y, Saito K et al (1999) Effects of interface traps on charge retention characteristics in silicon-quantum-dot-based metal-oxide-semiconductor diodes. Jpn J Appl Phys 38:425–428CrossRef Shi Y, Saito K et al (1999) Effects of interface traps on charge retention characteristics in silicon-quantum-dot-based metal-oxide-semiconductor diodes. Jpn J Appl Phys 38:425–428CrossRef
go back to reference Simeonov SS, Yourukov I (2004) Inter-trap tunnelling in thin SiO2 films. Phys Status Solidi A 45:2966–2979 Simeonov SS, Yourukov I (2004) Inter-trap tunnelling in thin SiO2 films. Phys Status Solidi A 45:2966–2979
go back to reference Southwick RA III (2011) An interactive simulation tool for complex multilayer dielectric devices. IEEE Trans Device Mater Reliabil 11:236–243CrossRef Southwick RA III (2011) An interactive simulation tool for complex multilayer dielectric devices. IEEE Trans Device Mater Reliabil 11:236–243CrossRef
go back to reference Specht M et al (2004) Sub-40 nm tri-gate charge trapping nonvolatile memory cells for high-density applications. In: Symposium on VLSI technical digest, pp 244–245 Specht M et al (2004) Sub-40 nm tri-gate charge trapping nonvolatile memory cells for high-density applications. In: Symposium on VLSI technical digest, pp 244–245
go back to reference Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York, NY Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York, NY
go back to reference Tam S, Ko P-K, Hu C (1984) Lucky-electron model of channel hot electron injection in MOSFETs. IEEE Trans Electron Devices 31:1116CrossRef Tam S, Ko P-K, Hu C (1984) Lucky-electron model of channel hot electron injection in MOSFETs. IEEE Trans Electron Devices 31:1116CrossRef
go back to reference Tiwari S, Rana F, Chan K, Hanafi H, Chan W, Buchanan D (1995) Volatile and non-volatile memories in silicon with nano-crystal storage. In: Technical digest – international electron devices meeting, pp 521–524 Tiwari S, Rana F, Chan K, Hanafi H, Chan W, Buchanan D (1995) Volatile and non-volatile memories in silicon with nano-crystal storage. In: Technical digest – international electron devices meeting, pp 521–524
go back to reference Tiwari S, Rana F, Hanafi H, Hartstein A, Crabbé E, Chan K (1996) A silicon nanocrystals based memory. Appl Phys Lett 68:1377–1379CrossRef Tiwari S, Rana F, Hanafi H, Hartstein A, Crabbé E, Chan K (1996) A silicon nanocrystals based memory. Appl Phys Lett 68:1377–1379CrossRef
go back to reference Tsai PH et al (2007) Novel SONOS-type nonvolatile memory device with suitable band offset in HfAlO charge-trapping layer. In: Symposium on VLSI TSA, pp 1–2 Tsai PH et al (2007) Novel SONOS-type nonvolatile memory device with suitable band offset in HfAlO charge-trapping layer. In: Symposium on VLSI TSA, pp 1–2
go back to reference Tsai CY, Lee TH et al (2010) Highly scaledcharge-trapping layer of ZrON nonvolatile memory device with good retention. Appl Phys Lett 97:213504CrossRef Tsai CY, Lee TH et al (2010) Highly scaledcharge-trapping layer of ZrON nonvolatile memory device with good retention. Appl Phys Lett 97:213504CrossRef
go back to reference Tsai CY, Lee TH et al (2011) Arsenic-implanted HfON charge trapping flash memory with large memory window and good retention. IEEE Electron Device Lett 32:381–383CrossRef Tsai CY, Lee TH et al (2011) Arsenic-implanted HfON charge trapping flash memory with large memory window and good retention. IEEE Electron Device Lett 32:381–383CrossRef
go back to reference Wahl J, Silva H, Gokirmak A, Kumar A, Welser J, Tiwari S (1999) Write, erase and storage times in nanocrystal memories and the role of interface states. Technical digest – international electron devices meeting, pp 375–378 Wahl J, Silva H, Gokirmak A, Kumar A, Welser J, Tiwari S (1999) Write, erase and storage times in nanocrystal memories and the role of interface states. Technical digest – international electron devices meeting, pp 375–378
go back to reference Wang L, Gai S (2014) The next generation mass storage devices – physical principles and current status. Contemp Phys 1–19 Wang L, Gai S (2014) The next generation mass storage devices – physical principles and current status. Contemp Phys 1–19
go back to reference Wegener H, Lincoln A, Pao H, O’Connell M, Oleksiak R, Lawrence H (1967) The variable threshold transistor, a new electrically-alterable, non-destructive read-only storage device IEDM techchnical digest. IEEE, New York, NY, p 70 Wegener H, Lincoln A, Pao H, O’Connell M, Oleksiak R, Lawrence H (1967) The variable threshold transistor, a new electrically-alterable, non-destructive read-only storage device IEDM techchnical digest. IEEE, New York, NY, p 70
go back to reference White M (2000) On the go with SONOS. IEEE Circuits Designs 22–31 White M (2000) On the go with SONOS. IEEE Circuits Designs 22–31
go back to reference White MH (2006) Advancements in nanoelectronic sonos nonvolatile semiconductor memory (NVSM) devices and technology. Int J Hi Speed Electron Syst 16:479–501CrossRef White MH (2006) Advancements in nanoelectronic sonos nonvolatile semiconductor memory (NVSM) devices and technology. Int J Hi Speed Electron Syst 16:479–501CrossRef
go back to reference Wu JY, Chen YT et al (2010) Ultrathin HfON trapping layer for charge-trap memory made by atomic layer deposition. IEEE Electron Device Lett 31:993–995CrossRef Wu JY, Chen YT et al (2010) Ultrathin HfON trapping layer for charge-trap memory made by atomic layer deposition. IEEE Electron Device Lett 31:993–995CrossRef
go back to reference Yang HJ, Cheng CF et al (2008) Comparison of MONOS memory device integrity when using Hf1-x-yNxOy trapping layers with different N compositions. IEEE Trans Electron Devices 55:1417–1423CrossRef Yang HJ, Cheng CF et al (2008) Comparison of MONOS memory device integrity when using Hf1-x-yNxOy trapping layers with different N compositions. IEEE Trans Electron Devices 55:1417–1423CrossRef
go back to reference Yater JA (2013) Implementation of Si nanocrystals in non-volatile memory devices. Phys Status Solidi A 210:1505–1511CrossRef Yater JA (2013) Implementation of Si nanocrystals in non-volatile memory devices. Phys Status Solidi A 210:1505–1511CrossRef
go back to reference Zhu C, Z. Xu et al (2012) High performance MAHAHOS memory devices: charge trapping and distribution in bandgap engineered structure. In: 4th IEEE international memory workshop (IMW), pp 1–4 Zhu C, Z. Xu et al (2012) High performance MAHAHOS memory devices: charge trapping and distribution in bandgap engineered structure. In: 4th IEEE international memory workshop (IMW), pp 1–4
Metadata
Title
Introduction to NVM Devices
Author
Panagiotis Dimitrakis, Ph.D.
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-15290-5_1

Premium Partners