Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

1. Introduction to Temporal Network Epidemiology

Authors : Naoki Masuda, Petter Holme

Published in: Temporal Network Epidemiology

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this introductory chapter, we start by briefly summarising temporal and adaptive networks, and epidemic process models frequently used in this volume. Then, we introduce a couple of what we think are key studies in the field, which are fundamental for various chapters in this volume. Finally, we give an overview of each chapter and discuss future work.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bansal, S., Read, J., Pourbohloul, B., Meyers, L.A.: The dynamic nature of contact networks in infectious disease epidemiology. J. Biol. Dyn. 4, 478–489 (2010)MathSciNetCrossRefMATH Bansal, S., Read, J., Pourbohloul, B., Meyers, L.A.: The dynamic nature of contact networks in infectious disease epidemiology. J. Biol. Dyn. 4, 478–489 (2010)MathSciNetCrossRefMATH
2.
go back to reference Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge, UK (2008)CrossRefMATH Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge, UK (2008)CrossRefMATH
3.
go back to reference Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys. Rev. Lett. 92, 178701 (2004)CrossRef Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys. Rev. Lett. 92, 178701 (2004)CrossRef
4.
go back to reference Colizza, V., Pastor-Satorras, R., Vespignani, A.: Reaction-diffusion processes and metapopulation models in heterogeneous networks. Nat. Phys. 3, 276–282 (2007)CrossRef Colizza, V., Pastor-Satorras, R., Vespignani, A.: Reaction-diffusion processes and metapopulation models in heterogeneous networks. Nat. Phys. 3, 276–282 (2007)CrossRef
6.
go back to reference Glass, R.J., Glass, L.M., Beyeler, W.E., Min, H.J.: Targeted social distancing designs for pandemic influenza. Emerg. Infect. Dis. 12, 1671–1681 (2006)CrossRef Glass, R.J., Glass, L.M., Beyeler, W.E., Min, H.J.: Targeted social distancing designs for pandemic influenza. Emerg. Infect. Dis. 12, 1671–1681 (2006)CrossRef
7.
go back to reference Gross, T., Blasius, B.: Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 259–271 (2008)CrossRef Gross, T., Blasius, B.: Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 259–271 (2008)CrossRef
8.
go back to reference Gross, T., D’Lima, C.J.D., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96, 208701 (2006)CrossRef Gross, T., D’Lima, C.J.D., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96, 208701 (2006)CrossRef
9.
go back to reference Gross, T., Sayama, H. (eds.): Adaptive Networks. Springer, Berlin (2009)MATH Gross, T., Sayama, H. (eds.): Adaptive Networks. Springer, Berlin (2009)MATH
11.
go back to reference Holme, P.: Model versions and fast algorithms for network epidemiology. J. Logist. Eng. Univ. 30, 1–7 (2014) Holme, P.: Model versions and fast algorithms for network epidemiology. J. Logist. Eng. Univ. 30, 1–7 (2014)
12.
go back to reference Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88, 234 (2015)CrossRef Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88, 234 (2015)CrossRef
13.
go back to reference Holme, P., Liljeros, F.: Birth and death of links control disease spreading in empirical contact networks. Sci. Rep. 4, 4999 (2014)CrossRef Holme, P., Liljeros, F.: Birth and death of links control disease spreading in empirical contact networks. Sci. Rep. 4, 4999 (2014)CrossRef
14.
go back to reference Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97–125 (2012)CrossRef Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97–125 (2012)CrossRef
15.
16.
go back to reference Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.L., Saramäki, J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102(R) (2011) Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.L., Saramäki, J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102(R) (2011)
17.
go back to reference Keeling, M.J., Eames, K.T.D.: Networks and epidemic models. J. R. Soc. Interface 2, 295–307 (2005)CrossRef Keeling, M.J., Eames, K.T.D.: Networks and epidemic models. J. R. Soc. Interface 2, 295–307 (2005)CrossRef
18.
go back to reference Kelso, J.K., Milne, G.J., Kelly, H.: Simulation suggests that rapid activation of social distancing can arrest epidemic development due to a novel strain of influenza. BMC Public Health 9, 117 (2009)CrossRef Kelso, J.K., Milne, G.J., Kelly, H.: Simulation suggests that rapid activation of social distancing can arrest epidemic development due to a novel strain of influenza. BMC Public Health 9, 117 (2009)CrossRef
19.
go back to reference Kretzschmar, M., Morris, M.: Measures of concurrency in networks and the spread of infectious disease. Math. Biosci. 133, 165–195 (1996)CrossRefMATH Kretzschmar, M., Morris, M.: Measures of concurrency in networks and the spread of infectious disease. Math. Biosci. 133, 165–195 (1996)CrossRefMATH
20.
go back to reference Lloyd, A.L.: Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics. Theor. Pop. Biol. 60, 59–71 (2001)CrossRef Lloyd, A.L.: Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics. Theor. Pop. Biol. 60, 59–71 (2001)CrossRef
21.
go back to reference Masuda, N., Holme, P.: Predicting and controlling infectious disease epidemics using temporal networks. F1000Prime Rep. 5, 6 (2013) Masuda, N., Holme, P.: Predicting and controlling infectious disease epidemics using temporal networks. F1000Prime Rep. 5, 6 (2013)
22.
go back to reference Masuda, N., Lambiotte, R.: A Guide to Temporal Networks. World Scientific, Singapore (2016)CrossRefMATH Masuda, N., Lambiotte, R.: A Guide to Temporal Networks. World Scientific, Singapore (2016)CrossRefMATH
23.
24.
go back to reference Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015)MathSciNetCrossRef Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015)MathSciNetCrossRef
25.
26.
go back to reference Rocha, L.E.C., Liljeros, F., Holme, P.: Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. PLoS Comput. Biol. 7, e1001109 (2011)CrossRef Rocha, L.E.C., Liljeros, F., Holme, P.: Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. PLoS Comput. Biol. 7, e1001109 (2011)CrossRef
27.
go back to reference Rocha, L.E.C., Masuda, N.: Individual-based approach to epidemic processes on arbitrary dynamic contact networks. Sci. Rep. 6, 31456 (2016)CrossRef Rocha, L.E.C., Masuda, N.: Individual-based approach to epidemic processes on arbitrary dynamic contact networks. Sci. Rep. 6, 31456 (2016)CrossRef
28.
go back to reference Sayama, H., Pestov, I., Schmidt, J., Bush, B.J., Wong, C., Yamanoi, J., Gross, T.: Modeling complex systems with adaptive networks. Comput. Math. Appl. 65, 1645–1664 (2013)MathSciNetCrossRefMATH Sayama, H., Pestov, I., Schmidt, J., Bush, B.J., Wong, C., Yamanoi, J., Gross, T.: Modeling complex systems with adaptive networks. Comput. Math. Appl. 65, 1645–1664 (2013)MathSciNetCrossRefMATH
29.
go back to reference Sharp, P.M., Hahn, B.H.: Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 1, a006841 (2011)CrossRef Sharp, P.M., Hahn, B.H.: Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 1, a006841 (2011)CrossRef
30.
go back to reference Starnini, M., Baronchelli, A., Pastor-Satorras, R.: Modeling human dynamics of face-to-face interaction networks. Phys. Rev. Lett. 110, 168701 (2013)CrossRef Starnini, M., Baronchelli, A., Pastor-Satorras, R.: Modeling human dynamics of face-to-face interaction networks. Phys. Rev. Lett. 110, 168701 (2013)CrossRef
31.
go back to reference Valdano, E., Ferreri, L., Poletto, C., Colizza, V.: Analytical computation of the epidemic threshold on temporal networks. Phys. Rev. X 5, 021005 (2015) Valdano, E., Ferreri, L., Poletto, C., Colizza, V.: Analytical computation of the epidemic threshold on temporal networks. Phys. Rev. X 5, 021005 (2015)
32.
go back to reference Vestergaard, C.L., Génois, M.: Temporal Gillespie algorithm: fast simulation of contagion processes on time-varying networks. PLoS Comput. Biol. 11, e1004579 (2015)CrossRef Vestergaard, C.L., Génois, M.: Temporal Gillespie algorithm: fast simulation of contagion processes on time-varying networks. PLoS Comput. Biol. 11, e1004579 (2015)CrossRef
33.
go back to reference Volz, E., Meyers, L.A.: Susceptible-infected-recovered epidemics in dynamic contact networks. Proc. R. Soc. B 274, 2925–2933 (2007)CrossRef Volz, E., Meyers, L.A.: Susceptible-infected-recovered epidemics in dynamic contact networks. Proc. R. Soc. B 274, 2925–2933 (2007)CrossRef
34.
go back to reference Volz, E., Meyers, L.A.: Epidemic thresholds in dynamic contact networks. J. R. Soc. Interface 6, 233–241 (2009)CrossRef Volz, E., Meyers, L.A.: Epidemic thresholds in dynamic contact networks. J. R. Soc. Interface 6, 233–241 (2009)CrossRef
35.
go back to reference Watts, C.H., May, R.M.: The influence of concurrent partnerships on the dynamics of HIV/AIDS. Math. Biosci. 108, 89–104 (1992)CrossRefMATH Watts, C.H., May, R.M.: The influence of concurrent partnerships on the dynamics of HIV/AIDS. Math. Biosci. 108, 89–104 (1992)CrossRefMATH
Metadata
Title
Introduction to Temporal Network Epidemiology
Authors
Naoki Masuda
Petter Holme
Copyright Year
2017
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5287-3_1

Premium Partner