Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Introduction to the Water Splitting Reaction

Authors : Carminna Ottone, Simelys Hernández, Marco Armandi, Barbara Bonelli

Published in: Testing Novel Water Oxidation Catalysts for Solar Fuels Production

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter will cover the most important aspects concerning the water splitting reaction by providing an overall description of the main solutions, as reported in the literature, addressing the improvement of the efficiency of solar driven hydrogen production. The natural water splitting system will be considered as a starting point, in order to gain a better understanding of the main challenges that material scientists are facing towards the development of novel catalysts of water oxidation, mainly. The attention will focus on the water oxidation half-reaction, since it is the most complex and demanding process from both the kinetic and thermodynamic points of view. In addition, some general aspects of the photocatalytic water splitting and the principal semiconductors studied for such process will be reviewed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gardecka AJ et al (2018) High efficiency water splitting photoanodes composed of nano-structured anatase-rutile TiO2 heterojunctions by pulsed-pressure MOCVD. Appl Catal B Environ 224(Supplement C):904–911CrossRef Gardecka AJ et al (2018) High efficiency water splitting photoanodes composed of nano-structured anatase-rutile TiO2 heterojunctions by pulsed-pressure MOCVD. Appl Catal B Environ 224(Supplement C):904–911CrossRef
2.
go back to reference Bensaid S et al (2012) Towards artificial leaves for solar hydrogen and fuels from carbon dioxide. Chemsuschem 5(3):500–521CrossRef Bensaid S et al (2012) Towards artificial leaves for solar hydrogen and fuels from carbon dioxide. Chemsuschem 5(3):500–521CrossRef
3.
go back to reference Najafpour MM et al (2012) Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review. J R Soc Interface 9(75):2383–2395CrossRef Najafpour MM et al (2012) Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review. J R Soc Interface 9(75):2383–2395CrossRef
4.
go back to reference Najafpour MM et al (2015) Comparison of nano-sized Mn oxides with the Mn cluster of photosystem II as catalysts for water oxidation. Biochim Biophys Acta (BBA)–Bioenerg 1847(2):294–306CrossRef Najafpour MM et al (2015) Comparison of nano-sized Mn oxides with the Mn cluster of photosystem II as catalysts for water oxidation. Biochim Biophys Acta (BBA)–Bioenerg 1847(2):294–306CrossRef
5.
go back to reference Chen C et al (2017) Natural and artificial Mn4Ca cluster for the water splitting reaction. Chemsuschem 10(22):4403–4408CrossRef Chen C et al (2017) Natural and artificial Mn4Ca cluster for the water splitting reaction. Chemsuschem 10(22):4403–4408CrossRef
6.
go back to reference McCrory CCL et al (2015) Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 137(13):4347–4357CrossRef McCrory CCL et al (2015) Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 137(13):4347–4357CrossRef
7.
go back to reference Hastings G (2015) Vibrational spectroscopy of photosystem I. Biochim Biophys Acta (BBA) Bioenerg 1847(1):55–68CrossRef Hastings G (2015) Vibrational spectroscopy of photosystem I. Biochim Biophys Acta (BBA) Bioenerg 1847(1):55–68CrossRef
8.
go back to reference Giardi MT, Pace E, Photosynthetic proteins for technological applications. Trends Biotechnol 23(5):257–263CrossRef Giardi MT, Pace E, Photosynthetic proteins for technological applications. Trends Biotechnol 23(5):257–263CrossRef
9.
go back to reference McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106(11):4455–4483CrossRef McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106(11):4455–4483CrossRef
10.
go back to reference Herrero C et al (2011) Artificial photosynthetic systems. Using light and water to provide electrons and protons for the synthesis of a fuel. Energy Environ Sci 4(7):2353–2365CrossRef Herrero C et al (2011) Artificial photosynthetic systems. Using light and water to provide electrons and protons for the synthesis of a fuel. Energy Environ Sci 4(7):2353–2365CrossRef
11.
go back to reference Kirby JA et al (1981) State of manganese in the photosynthetic apparatus. 2. X-ray absorption edge studies on manganese in photosynthetic membrane. J Am Chem Soc 103(18):5537–5542CrossRef Kirby JA et al (1981) State of manganese in the photosynthetic apparatus. 2. X-ray absorption edge studies on manganese in photosynthetic membrane. J Am Chem Soc 103(18):5537–5542CrossRef
12.
go back to reference Zouni A et al (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739CrossRef Zouni A et al (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739CrossRef
13.
go back to reference Ferreira KN et al (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303(5665):1831–1838CrossRef Ferreira KN et al (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303(5665):1831–1838CrossRef
14.
go back to reference Galstyan A, Robertazzi A, Knapp EW (2012) Oxygen-evolving Mn cluster in photosystem II: the protonation pattern and oxidation state in the high-resolution crystal structure. J Am Chem Soc 134(17):7442–7449CrossRef Galstyan A, Robertazzi A, Knapp EW (2012) Oxygen-evolving Mn cluster in photosystem II: the protonation pattern and oxidation state in the high-resolution crystal structure. J Am Chem Soc 134(17):7442–7449CrossRef
15.
go back to reference Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution–I. A linear four step mechanism. Photochem Photobiol 11(6):457–475CrossRef Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution–I. A linear four step mechanism. Photochem Photobiol 11(6):457–475CrossRef
16.
go back to reference Umena Y et al (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55CrossRef Umena Y et al (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55CrossRef
17.
go back to reference Suga M et al (2014) Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517:99CrossRef Suga M et al (2014) Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517:99CrossRef
18.
go back to reference Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(5892):1072–1075CrossRef Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(5892):1072–1075CrossRef
19.
go back to reference Jiao F, Frei H (2010) Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ Sci 3(8):1018–1027CrossRef Jiao F, Frei H (2010) Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ Sci 3(8):1018–1027CrossRef
20.
go back to reference Duan L et al (2011) Visible light-driven water oxidation-from molecular catalysts to photoelectrochemical cells. Energy Environ Sci 4(9):3296–3313CrossRef Duan L et al (2011) Visible light-driven water oxidation-from molecular catalysts to photoelectrochemical cells. Energy Environ Sci 4(9):3296–3313CrossRef
21.
go back to reference Kanan MW, Surendranath Y, Nocera DG (2009) Cobalt-phosphate oxygen-evolving compound. Chem Soc Rev 38(1):109–114CrossRef Kanan MW, Surendranath Y, Nocera DG (2009) Cobalt-phosphate oxygen-evolving compound. Chem Soc Rev 38(1):109–114CrossRef
22.
go back to reference Zhu G et al (2012) Water oxidation catalyzed by a new tetracobalt-substituted polyoxometalate complex: [{Co4(µ-OH)(H2O)3}(Si2W19O70)]11. Dalton Trans 41(7):2084–2090CrossRef Zhu G et al (2012) Water oxidation catalyzed by a new tetracobalt-substituted polyoxometalate complex: [{Co4(µ-OH)(H2O)3}(Si2W19O70)]11. Dalton Trans 41(7):2084–2090CrossRef
23.
go back to reference Baktash E et al (2013) Cyanamide route to calcium-manganese oxide foams for water oxidation. Dalton Trans 42(48):16920–16929CrossRef Baktash E et al (2013) Cyanamide route to calcium-manganese oxide foams for water oxidation. Dalton Trans 42(48):16920–16929CrossRef
24.
go back to reference Mukhopadhyay S et al (2004) Manganese clusters with relevance to photosystem II. Chem Rev 104(9):3981–4026CrossRef Mukhopadhyay S et al (2004) Manganese clusters with relevance to photosystem II. Chem Rev 104(9):3981–4026CrossRef
25.
go back to reference Domen K et al (1986) Photocatalytic decomposition of water into hydrogen and oxygen over nickel (II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts. J Phys Chem 90(2):292–295CrossRef Domen K et al (1986) Photocatalytic decomposition of water into hydrogen and oxygen over nickel (II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts. J Phys Chem 90(2):292–295CrossRef
26.
go back to reference Peter LM (2013) Energetics and kinetics of light-driven oxygen evolution at semiconductor electrodes: the example of hematite. J Solid State Electrochem 17(2):315–326CrossRef Peter LM (2013) Energetics and kinetics of light-driven oxygen evolution at semiconductor electrodes: the example of hematite. J Solid State Electrochem 17(2):315–326CrossRef
27.
go back to reference Peter LM, Wijayantha KU, Tahir AA (2012) Kinetics of light-driven oxygen evolution at α-Fe2O3 electrodes. Faraday Discuss 155:309–322CrossRef Peter LM, Wijayantha KU, Tahir AA (2012) Kinetics of light-driven oxygen evolution at α-Fe2O3 electrodes. Faraday Discuss 155:309–322CrossRef
28.
go back to reference Busch M, Ahlberg E, Panas I (2013) Water oxidation on MnOx and IrOx: why similar performance? J Phys Chem C 117(1):288–292CrossRef Busch M, Ahlberg E, Panas I (2013) Water oxidation on MnOx and IrOx: why similar performance? J Phys Chem C 117(1):288–292CrossRef
29.
go back to reference Nakamura R, Nakato Y (2004) Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J Am Chem Soc 126(4):1290–1298CrossRef Nakamura R, Nakato Y (2004) Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J Am Chem Soc 126(4):1290–1298CrossRef
30.
go back to reference Sivasankar N, Weare WW, Frei H (2011) Direct observation of a hydroperoxide surface intermediate upon visible light-driven water oxidation at an Ir oxide nanocluster catalyst by rapid-scan FT-IR spectroscopy. J Am Chem Soc 133(33):12976–12979CrossRef Sivasankar N, Weare WW, Frei H (2011) Direct observation of a hydroperoxide surface intermediate upon visible light-driven water oxidation at an Ir oxide nanocluster catalyst by rapid-scan FT-IR spectroscopy. J Am Chem Soc 133(33):12976–12979CrossRef
31.
go back to reference Blakemore JD et al (2010) Half-sandwich iridium complexes for homogeneous water-oxidation catalysis. J Am Chem Soc 132(45):16017–16029CrossRef Blakemore JD et al (2010) Half-sandwich iridium complexes for homogeneous water-oxidation catalysis. J Am Chem Soc 132(45):16017–16029CrossRef
32.
go back to reference Surendranath Y, Nocera DG (2012) Oxygen evolution reaction chemistry of oxide-based electrodes. In: Karlin KD (ed) Progress in inorganic chemistry. Wiley, New Jersey Surendranath Y, Nocera DG (2012) Oxygen evolution reaction chemistry of oxide-based electrodes. In: Karlin KD (ed) Progress in inorganic chemistry. Wiley, New Jersey
33.
go back to reference Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38CrossRef Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38CrossRef
34.
go back to reference Parkinson B, Turner J (2013) The potential contribution of photoelectrochemistry in the global energy future. Photoelectrochem Water Split Mater Process Archit 9:1 Parkinson B, Turner J (2013) The potential contribution of photoelectrochemistry in the global energy future. Photoelectrochem Water Split Mater Process Archit 9:1
35.
go back to reference Ni M et al (2007) A review and recent developments in photocatalytic water-splitting using for hydrogen production. Renew Sustain Energy Rev 11(3):401–425CrossRef Ni M et al (2007) A review and recent developments in photocatalytic water-splitting using for hydrogen production. Renew Sustain Energy Rev 11(3):401–425CrossRef
36.
go back to reference Yang X et al (2009) Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett 9(6):2331–2336CrossRef Yang X et al (2009) Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett 9(6):2331–2336CrossRef
37.
go back to reference Li Y et al (2011) A novel photoelectrochemical cell with self-organized TiO2 nanotubes as photoanodes for hydrogen generation. Int J Hydrogen Energy 36(22):14374–14380CrossRef Li Y et al (2011) A novel photoelectrochemical cell with self-organized TiO2 nanotubes as photoanodes for hydrogen generation. Int J Hydrogen Energy 36(22):14374–14380CrossRef
38.
go back to reference Wang H, Turner JA (2010) Characterization of hematite thin films for photoelectrochemical water splitting in a dual photoelectrode device. J Electrochem Soc 157(11):F173–F178CrossRef Wang H, Turner JA (2010) Characterization of hematite thin films for photoelectrochemical water splitting in a dual photoelectrode device. J Electrochem Soc 157(11):F173–F178CrossRef
39.
go back to reference Su J et al (2011) Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett 11(5):1928–1933CrossRef Su J et al (2011) Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett 11(5):1928–1933CrossRef
40.
go back to reference Qiu Y et al (2011) Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting. Nano Lett 12(1):407–413CrossRef Qiu Y et al (2011) Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting. Nano Lett 12(1):407–413CrossRef
41.
go back to reference Hsu C-H, Chen D-H (2011) Photoresponse and stability improvement of ZnO nanorod array thin film as a single layer of photoelectrode for photoelectrochemical water splitting. Int J Hydrog Energy 36(24):15538–15547CrossRef Hsu C-H, Chen D-H (2011) Photoresponse and stability improvement of ZnO nanorod array thin film as a single layer of photoelectrode for photoelectrochemical water splitting. Int J Hydrog Energy 36(24):15538–15547CrossRef
42.
go back to reference Sivula K, Formal FL, Grätzel M (2009) WO3 − Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chem Mater 21(13):2862–2867CrossRef Sivula K, Formal FL, Grätzel M (2009) WO3 − Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chem Mater 21(13):2862–2867CrossRef
43.
go back to reference Ding C et al (2013) Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias. Phys Chem Chem Phys 15(13):4589–4595CrossRef Ding C et al (2013) Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias. Phys Chem Chem Phys 15(13):4589–4595CrossRef
44.
go back to reference Warren SC et al (2013) Identifying champion nanostructures for solar water-splitting. Nat Mater 12(9):842–849CrossRef Warren SC et al (2013) Identifying champion nanostructures for solar water-splitting. Nat Mater 12(9):842–849CrossRef
45.
go back to reference Hernández S et al (2014) Optimization of 1D ZnO@TiO2 core-shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination. ACS Appl Mater Interfaces 6(15):12153–12167CrossRef Hernández S et al (2014) Optimization of 1D ZnO@TiO2 core-shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination. ACS Appl Mater Interfaces 6(15):12153–12167CrossRef
46.
go back to reference Reece SY et al (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334(6056):645–648CrossRef Reece SY et al (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334(6056):645–648CrossRef
47.
go back to reference Swierk JR, Mallouk TE (2013) Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chem Soc Rev 42(6):2357–2387CrossRef Swierk JR, Mallouk TE (2013) Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chem Soc Rev 42(6):2357–2387CrossRef
48.
go back to reference Youngblood WJ et al (2009) Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131(3):926–927CrossRef Youngblood WJ et al (2009) Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131(3):926–927CrossRef
49.
go back to reference Ran J et al (2014) Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev Ran J et al (2014) Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev
50.
go back to reference Maeda K et al (2009) Photocatalytic hydrogen evolution from hexaniobate nanoscrolls and calcium niobate nanosheets sensitized by ruthenium(II) bipyridyl complexes. J Phys Chem C 113(18):7962–7969CrossRef Maeda K et al (2009) Photocatalytic hydrogen evolution from hexaniobate nanoscrolls and calcium niobate nanosheets sensitized by ruthenium(II) bipyridyl complexes. J Phys Chem C 113(18):7962–7969CrossRef
51.
go back to reference Youngblood WJ et al (2009) Visible light water splitting using dye-sensitized oxide semiconductors. Acc Chem Res 42(12):1966–1973CrossRef Youngblood WJ et al (2009) Visible light water splitting using dye-sensitized oxide semiconductors. Acc Chem Res 42(12):1966–1973CrossRef
52.
go back to reference Watanabe M (2017) Dye-sensitized photocatalyst for effective water splitting catalyst. Sci Technol Adv Mater 18(1):705–723CrossRef Watanabe M (2017) Dye-sensitized photocatalyst for effective water splitting catalyst. Sci Technol Adv Mater 18(1):705–723CrossRef
54.
go back to reference Hernandez S et al (2017) Correction: core-substituted naphthalenediimides anchored on BiVO4 for visible light-driven water splitting. Green Chem 19(11):2695CrossRef Hernandez S et al (2017) Correction: core-substituted naphthalenediimides anchored on BiVO4 for visible light-driven water splitting. Green Chem 19(11):2695CrossRef
Metadata
Title
Introduction to the Water Splitting Reaction
Authors
Carminna Ottone
Simelys Hernández
Marco Armandi
Barbara Bonelli
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-12712-1_1