Skip to main content
Top
Published in:

2016 | OriginalPaper | Chapter

1. Introduction

Authors : George J. Knafl, Kai Ding

Published in: Adaptive Regression for Modeling Nonlinear Relationships

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nonlinearity in predictor (or explanatory or independent) variables in regression models for different types of outcome (or response or dependent) variables is often not considered in applied research. While relationships can reasonably be treated as linear in some cases, it is not unusual for them to be distinctly nonlinear. A standard linear analysis in the latter cases can produce misleading conclusions while a nonlinear analysis can provide novel insights into data not otherwise possible. Methods are needed for deciding whether relationships are linear or nonlinear and for fitting appropriate models when they are nonlinear. Methods for these purposes are covered in this book using what are called fractional polynomials based on power transformations of primary predictor variables with real valued powers. An adaptive approach is used to construct fractional polynomial models based on heuristic (or rule-based) searches through power transforms of primary predictor variables. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in a variety of contexts including adaptive regression of continuous outcomes, adaptive logistic regression of dichotomous and polytomous outcomes with two or more values, and adaptive Poisson regression of count/rate outcomes. Power transformation of positive valued continuous outcomes is covered as well as modeling of variances/dispersions with fractional polynomials. The book also covers alternative approaches for modeling of nonlinear relationships including standard polynomials, generalized additive models (GAMs) computed using local regression (loess) and spline smoothing approaches (through SAS PROC GAM), and multivariate adaptive regression splines (MARS) models (through SAS PROC ADAPTIVEREG).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahlberg, J. H., Nilson, E. N., & Walsh, J. L. (1967). The theory of splines and their applications. New York: Academic Press.MATH Ahlberg, J. H., Nilson, E. N., & Walsh, J. L. (1967). The theory of splines and their applications. New York: Academic Press.MATH
go back to reference Burman, P. (1989). A comparative study of ordinary cross-validation, ν-fold cross-validation and the repeated learning-testing methods. Biometrika, 76, 503–514.MathSciNetCrossRefMATH Burman, P. (1989). A comparative study of ordinary cross-validation, ν-fold cross-validation and the repeated learning-testing methods. Biometrika, 76, 503–514.MathSciNetCrossRefMATH
go back to reference Cleveland, W. S., Devlin, S. J., & Gross, E. (1988). Regression by local fitting. Journal of Econometrics, 37, 87–114.MathSciNetCrossRef Cleveland, W. S., Devlin, S. J., & Gross, E. (1988). Regression by local fitting. Journal of Econometrics, 37, 87–114.MathSciNetCrossRef
go back to reference Der, G., & Everitt, B. S. (2006). Statistical analysis of medical data using SAS. Boca Raton, FL: Chapman & Hall/CRC.MATH Der, G., & Everitt, B. S. (2006). Statistical analysis of medical data using SAS. Boca Raton, FL: Chapman & Hall/CRC.MATH
go back to reference Diggle, P. J., Heagarty, P., Liang, K.-Y., & Zeger, S. L. (2002). Analysis of longitudinal data (2nd ed.). Oxford: Oxford University Press. Diggle, P. J., Heagarty, P., Liang, K.-Y., & Zeger, S. L. (2002). Analysis of longitudinal data (2nd ed.). Oxford: Oxford University Press.
go back to reference Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2011). Applied longitudinal analysis (2nd ed.). Hoboken, NJ: John Wiley & Sons.MATH Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2011). Applied longitudinal analysis (2nd ed.). Hoboken, NJ: John Wiley & Sons.MATH
go back to reference Hastie, T. J., & Tibshirani, R. J. (1999). Generalized additive models. Boca Raton, FL: Chapman & Hall/CRC.MATH Hastie, T. J., & Tibshirani, R. J. (1999). Generalized additive models. Boca Raton, FL: Chapman & Hall/CRC.MATH
go back to reference Knafl, G. J., Fennie, K. P., Bova, C., Dieckhaus, K., & Williams, A. B. (2004). Electronic monitoring device event modeling on an individual-subject basis using adaptive Poisson regression. Statistics in Medicine, 23, 783–801.CrossRef Knafl, G. J., Fennie, K. P., Bova, C., Dieckhaus, K., & Williams, A. B. (2004). Electronic monitoring device event modeling on an individual-subject basis using adaptive Poisson regression. Statistics in Medicine, 23, 783–801.CrossRef
go back to reference Knafl, G. J., Fennie, K. P., & O'Malley, J. P. (2006). Adaptive repeated measures modeling using likelihood cross-validation. In B. Bovaruchuk (Ed.), Proceedings of the second IASTED international conference on computational intelligence 2006 (pp. 422–427). Anaheim: ACTA Press. Knafl, G. J., Fennie, K. P., & O'Malley, J. P. (2006). Adaptive repeated measures modeling using likelihood cross-validation. In B. Bovaruchuk (Ed.), Proceedings of the second IASTED international conference on computational intelligence 2006 (pp. 422–427). Anaheim: ACTA Press.
go back to reference Knafl, G. J., & Riegel, B. (2014). What puts heart failure patients at risk for poor medication adherence? Patient Preference and Adherence, 8, 1007–1018. Knafl, G. J., & Riegel, B. (2014). What puts heart failure patients at risk for poor medication adherence? Patient Preference and Adherence, 8, 1007–1018.
go back to reference McCullagh, P., & Nelder, J. A. (1999). Generalized linear models (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC.MATH McCullagh, P., & Nelder, J. A. (1999). Generalized linear models (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC.MATH
go back to reference Riegel, B., & Knafl, G. J. (2014). Electronically monitored medication adherence predicts hospitalization in heart failure patients. Patient Preference and Adherence, 8, 1–13. Riegel, B., & Knafl, G. J. (2014). Electronically monitored medication adherence predicts hospitalization in heart failure patients. Patient Preference and Adherence, 8, 1–13.
go back to reference Royston, P., & Altman, D. G. (1994). Regression using fractional polynomials of continuous covariates: Parsimonious parametric modeling. Applied Statistics, 43, 429–467.CrossRef Royston, P., & Altman, D. G. (1994). Regression using fractional polynomials of continuous covariates: Parsimonious parametric modeling. Applied Statistics, 43, 429–467.CrossRef
go back to reference Royston, P., & Sauerbrei, W. (2008). Multivariable model-building: A practical approach to regression analysis based on fractional polynomials for modelling continuous variables. Hoboken, NJ: John Wiley & Sons.CrossRefMATH Royston, P., & Sauerbrei, W. (2008). Multivariable model-building: A practical approach to regression analysis based on fractional polynomials for modelling continuous variables. Hoboken, NJ: John Wiley & Sons.CrossRefMATH
Metadata
Title
Introduction
Authors
George J. Knafl
Kai Ding
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-33946-7_1

Premium Partner