Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

1. Introduction

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As the most abundant polymeric raw material, cellulose has been attractive to the global industry in many aspects over the past decades. Sources of this ubiquitous biopolymer are mentioned, with attention to the special hierarchical organization of wood cellulose. Details of its structure are given, including the molecular structures, hydrogen bond systems, and crystalline structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–208CrossRef O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–208CrossRef
2.
go back to reference Klemm D, Heublein B, Fink H-P et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef Klemm D, Heublein B, Fink H-P et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef
3.
go back to reference Smith LG, Oppenheimer DG (2005) Spatial control of cell expansion by the plant cytoskeleton. Annu Rev Cell Dev Biol 21:271–295CrossRef Smith LG, Oppenheimer DG (2005) Spatial control of cell expansion by the plant cytoskeleton. Annu Rev Cell Dev Biol 21:271–295CrossRef
4.
go back to reference Eichhorn SJ, Baillie CA, Zafeiropoulos N et al (2001) Current international research into cellulosic fibers and composites. J Mater Sci 36:2107–2131CrossRef Eichhorn SJ, Baillie CA, Zafeiropoulos N et al (2001) Current international research into cellulosic fibers and composites. J Mater Sci 36:2107–2131CrossRef
5.
go back to reference Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef
6.
go back to reference Taylor NG (2008) Cellulose biosynthesis and deposition in higher plants. New Phytol 178:239–252CrossRef Taylor NG (2008) Cellulose biosynthesis and deposition in higher plants. New Phytol 178:239–252CrossRef
7.
go back to reference Keshk SMAS (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotechniq 4:150CrossRef Keshk SMAS (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotechniq 4:150CrossRef
8.
go back to reference Brown RM (1999) Cellulose structure and biosynthesis. Pure Appl Chem 71:767–776 Brown RM (1999) Cellulose structure and biosynthesis. Pure Appl Chem 71:767–776
9.
10.
go back to reference Nishiyama Y, Sugiyama J, Chanzy H et al (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRef Nishiyama Y, Sugiyama J, Chanzy H et al (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRef
11.
go back to reference Nishiyama Y, Chanzy H, Langan P (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef Nishiyama Y, Chanzy H, Langan P (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef
12.
go back to reference Hearle J (1958) A fringed fibril theory of structure in crystalline polymers. J Polym Sci 28:432–435CrossRef Hearle J (1958) A fringed fibril theory of structure in crystalline polymers. J Polym Sci 28:432–435CrossRef
13.
go back to reference Isogai A, Usuda M, Kato T et al (1989) Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 22:3168–3172CrossRef Isogai A, Usuda M, Kato T et al (1989) Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 22:3168–3172CrossRef
14.
go back to reference Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175CrossRef Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175CrossRef
15.
go back to reference Finkenstadt VL, Millane RP (1998) Crystal structure of Valonia cellulose I. Macromolecules 31:7776–7783CrossRef Finkenstadt VL, Millane RP (1998) Crystal structure of Valonia cellulose I. Macromolecules 31:7776–7783CrossRef
16.
go back to reference Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416CrossRef Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416CrossRef
17.
go back to reference Kono H, Numata Y, Erata T et al (2004) 13C and 1H resonance assignment of mercerized cellulose II by two-dimensional MAS NMR spectroscopies. Macromolecules 37:5310–5316CrossRef Kono H, Numata Y, Erata T et al (2004) 13C and 1H resonance assignment of mercerized cellulose II by two-dimensional MAS NMR spectroscopies. Macromolecules 37:5310–5316CrossRef
18.
go back to reference Wada M, Heux L, Isogai A et al (2001) Improved structural data of cellulose IIII prepared in supercritical ammonia. Macromolecules 34:1237–1243CrossRef Wada M, Heux L, Isogai A et al (2001) Improved structural data of cellulose IIII prepared in supercritical ammonia. Macromolecules 34:1237–1243CrossRef
19.
go back to reference Sarko A, Southwick J, Hayashi J (1976) Packing analysis of carbohydrates and polysaccharides. 7. Crystal structure of cellulose IIII and Its relationship to other cellulose polymorphs. Macromolecules 9:857–863CrossRef Sarko A, Southwick J, Hayashi J (1976) Packing analysis of carbohydrates and polysaccharides. 7. Crystal structure of cellulose IIII and Its relationship to other cellulose polymorphs. Macromolecules 9:857–863CrossRef
20.
go back to reference Gardiner ES, Sarko A (1985) Packing analysis of carbohydrates and polysaccharides. 16. The crystal structure of cellulose IVI and IVII. Can J Chem 63:173–180CrossRef Gardiner ES, Sarko A (1985) Packing analysis of carbohydrates and polysaccharides. 16. The crystal structure of cellulose IVI and IVII. Can J Chem 63:173–180CrossRef
Metadata
Title
Introduction
Author
Haisong Qi
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-49592-7_1

Premium Partners