Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

1. Introduction

Authors : Yu Huang, Miao Yu

Published in: Hazard Analysis of Seismic Soil Liquefaction

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An earthquake is the perceptible shaking of the Earth’s surface, which can be violent enough to toss people around and even destroy entire cities. Seismic liquefaction is one of the main causes of damage to buildings and infrastructure during an earthquake. Liquefaction can be defined as a loss of strength and stiffness of the soil. Therefore, comprehensive analyses of seismically induced liquefaction can provide a basis for disaster prevention and mitigation. This chapter gives a preliminary introduction to seismic hazards and related liquefaction damage worldwide. Then, multi-approaches for hazard analysis of seismic soil liquefaction are reviewed. Finally, the main content of the book is summarized.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Andrus, R. D., Piratheepan, P., Ellis, B. S., et al. (2004). Comparing liquefaction evaluation methods using penetration-V S relationships. Soil Dynamics and Earthquake Engineering, 24(9), 713–721.CrossRef Andrus, R. D., Piratheepan, P., Ellis, B. S., et al. (2004). Comparing liquefaction evaluation methods using penetration-V S relationships. Soil Dynamics and Earthquake Engineering, 24(9), 713–721.CrossRef
go back to reference Aydingun, O., & Adalier, K. (2003). Numerical analysis of seismically induced liquefaction in earth embankment foundations. Part I. Benchmark model. Canadian Geotechnical Journal, 40(4), 753–765.CrossRef Aydingun, O., & Adalier, K. (2003). Numerical analysis of seismically induced liquefaction in earth embankment foundations. Part I. Benchmark model. Canadian Geotechnical Journal, 40(4), 753–765.CrossRef
go back to reference Bhattacharya, S., Hyodo, M., Goda, K., et al. (2011). Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake. Soil Dynamics and Earthquake Engineering, 31(11), 1618–1628.CrossRef Bhattacharya, S., Hyodo, M., Goda, K., et al. (2011). Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake. Soil Dynamics and Earthquake Engineering, 31(11), 1618–1628.CrossRef
go back to reference Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155–164.CrossRef Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155–164.CrossRef
go back to reference Byrne, P. M., Park, S. S., Beaty, M., et al. (2004). Numerical modeling of liquefaction and comparison with centrifuge tests. Canadian Geotechnical Journal, 41(2), 193–211.CrossRef Byrne, P. M., Park, S. S., Beaty, M., et al. (2004). Numerical modeling of liquefaction and comparison with centrifuge tests. Canadian Geotechnical Journal, 41(2), 193–211.CrossRef
go back to reference Cao, Z., Youd, T. L., & Yuan, X. (2011). Gravelly soils that liquefied during 2008 Wenchuan, China earthquake, Ms = 8.0. Soil Dynamics and Earthquake Engineering, 31(8), 1132–1143.CrossRef Cao, Z., Youd, T. L., & Yuan, X. (2011). Gravelly soils that liquefied during 2008 Wenchuan, China earthquake, Ms = 8.0. Soil Dynamics and Earthquake Engineering, 31(8), 1132–1143.CrossRef
go back to reference Dafalias, Y. F., & Popov, E. P. (1975). A model of nonlinearly hardening materials for complex loading. Acta Mechanica, 21(3), 173–192.CrossRef Dafalias, Y. F., & Popov, E. P. (1975). A model of nonlinearly hardening materials for complex loading. Acta Mechanica, 21(3), 173–192.CrossRef
go back to reference Di, Y., Yang, J., & Sato, T. (2008). Seismic performance of a river Dike improved by sand compaction piles. Journal of Performance of Constructed Facilities, 22(6), 381–390.CrossRef Di, Y., Yang, J., & Sato, T. (2008). Seismic performance of a river Dike improved by sand compaction piles. Journal of Performance of Constructed Facilities, 22(6), 381–390.CrossRef
go back to reference Dungca, J. R., Kuwano, J. I. R. O., Takahashi, A., et al. (2006). Shaking table tests on the lateral response of a pile buried in liquefied sand. Soil Dynamics and Earthquake Engineering, 26(2), 287–295.CrossRef Dungca, J. R., Kuwano, J. I. R. O., Takahashi, A., et al. (2006). Shaking table tests on the lateral response of a pile buried in liquefied sand. Soil Dynamics and Earthquake Engineering, 26(2), 287–295.CrossRef
go back to reference Huang, Y., & Jiang, X. (2010). Field-observed phenomena of seismic liquefaction and subsidence during the 2008 Wenchuan earthquake in China. Natural Hazards, 54(3), 839–850.CrossRef Huang, Y., & Jiang, X. (2010). Field-observed phenomena of seismic liquefaction and subsidence during the 2008 Wenchuan earthquake in China. Natural Hazards, 54(3), 839–850.CrossRef
go back to reference Huang, Y., Ye, W. M., & Chen, Z. C. (2009). Seismic response analysis of the deep saturated soil deposits in Shanghai. Environmental Geology, 56, 1163–1169.CrossRef Huang, Y., Ye, W. M., & Chen, Z. C. (2009). Seismic response analysis of the deep saturated soil deposits in Shanghai. Environmental Geology, 56, 1163–1169.CrossRef
go back to reference Huang, Y., & Yu, M. (2013). Review of soil liquefaction characteristics during major earthquakes of the twenty-first century. Natural Hazards, 65(3), 2375–2384.CrossRef Huang, Y., & Yu, M. (2013). Review of soil liquefaction characteristics during major earthquakes of the twenty-first century. Natural Hazards, 65(3), 2375–2384.CrossRef
go back to reference Huang, Y., Yu, M., & Bhattacharya, S. (2014). Characteristics of flow failures triggered by recent earthquakes in China. Indian Geotechnical Journal, 44(2), 218–224.CrossRef Huang, Y., Yu, M., & Bhattacharya, S. (2014). Characteristics of flow failures triggered by recent earthquakes in China. Indian Geotechnical Journal, 44(2), 218–224.CrossRef
go back to reference Idriss, I. M., & Boulanger, R. W. (2006). Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26(2), 115–130.CrossRef Idriss, I. M., & Boulanger, R. W. (2006). Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26(2), 115–130.CrossRef
go back to reference Iwasaki, T., Arakawa, T., & Tokida, K. I. (1984). Simplified procedures for assessing soil liquefaction during earthquakes. International Journal of Soil Dynamics and Earthquake Engineering, 3(1), 49–58.CrossRef Iwasaki, T., Arakawa, T., & Tokida, K. I. (1984). Simplified procedures for assessing soil liquefaction during earthquakes. International Journal of Soil Dynamics and Earthquake Engineering, 3(1), 49–58.CrossRef
go back to reference Lenz, J. A., & Baise, L. G. (2007). Spatial variability of liquefaction potential in regional mapping using CPT and SPT data. Soil Dynamics and Earthquake Engineering, 27(7), 690–702.CrossRef Lenz, J. A., & Baise, L. G. (2007). Spatial variability of liquefaction potential in regional mapping using CPT and SPT data. Soil Dynamics and Earthquake Engineering, 27(7), 690–702.CrossRef
go back to reference Lin, P. S., Chang, C. W., & Chang, W. J. (2004). Characterization of liquefaction resistance in gravelly soil: large hammer penetration test and shear wave velocity approach. Soil Dynamics and Earthquake Engineering, 24(9), 675–687.CrossRef Lin, P. S., Chang, C. W., & Chang, W. J. (2004). Characterization of liquefaction resistance in gravelly soil: large hammer penetration test and shear wave velocity approach. Soil Dynamics and Earthquake Engineering, 24(9), 675–687.CrossRef
go back to reference Moss, R. E., Seed, R. B., Kayen, R. E., et al. (2006). CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 132(8), 1032–1051.CrossRef Moss, R. E., Seed, R. B., Kayen, R. E., et al. (2006). CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 132(8), 1032–1051.CrossRef
go back to reference Oka, F., Yashima, A., Tateishi, A., et al. (1999). A cyclic elasto-plastic constitutive model for sand considering a plain-strain dependence of the shear modulus. Geotechnique, 49(5), 661–680.CrossRef Oka, F., Yashima, A., Tateishi, A., et al. (1999). A cyclic elasto-plastic constitutive model for sand considering a plain-strain dependence of the shear modulus. Geotechnique, 49(5), 661–680.CrossRef
go back to reference Pastor, M., Zienkiewicz, O. C., & Chan, A. H. C. (1990). Generalized plasticity and the modelling of soil behaviour. International Journal for Numerical and Analytical Methods in Geomechanics, 14(3), 151–190.CrossRef Pastor, M., Zienkiewicz, O. C., & Chan, A. H. C. (1990). Generalized plasticity and the modelling of soil behaviour. International Journal for Numerical and Analytical Methods in Geomechanics, 14(3), 151–190.CrossRef
go back to reference Popescu, R., & Prevost, J. H. (1993). Centrifuge validation of a numerical model for dynamic soil liquefaction. Soil Dynamics and Earthquake Engineering, 12(2), 73–90.CrossRef Popescu, R., & Prevost, J. H. (1993). Centrifuge validation of a numerical model for dynamic soil liquefaction. Soil Dynamics and Earthquake Engineering, 12(2), 73–90.CrossRef
go back to reference Seed, H. B., & Idriss, I. M. (1967). Analysis of soil liquefaction: Niigata earthquake. Journal of the Soil Mechanics and Foundations Division, 93(3), 83–108. Seed, H. B., & Idriss, I. M. (1967). Analysis of soil liquefaction: Niigata earthquake. Journal of the Soil Mechanics and Foundations Division, 93(3), 83–108.
go back to reference Seed, B., & Lee, K. L. (1966). Liquefaction of saturated sands during cyclic loading. Journal of Soil Mechanics & Foundations Division, 92(SM6), 105–134. Seed, B., & Lee, K. L. (1966). Liquefaction of saturated sands during cyclic loading. Journal of Soil Mechanics & Foundations Division, 92(SM6), 105–134.
go back to reference Sonmez, H., & Gokceoglu, C. (2005). A liquefaction severity index suggested for engineering practice. Environmental Geology, 48(1), 81–91.CrossRef Sonmez, H., & Gokceoglu, C. (2005). A liquefaction severity index suggested for engineering practice. Environmental Geology, 48(1), 81–91.CrossRef
go back to reference Xenaki, V. C., & Athanasopoulos, G. A. (2008). Dynamic properties and liquefaction resistance of two soil materials in an earthfill dam—laboratory test results. Soil Dynamics and Earthquake Engineering, 28(8), 605–620.CrossRef Xenaki, V. C., & Athanasopoulos, G. A. (2008). Dynamic properties and liquefaction resistance of two soil materials in an earthfill dam—laboratory test results. Soil Dynamics and Earthquake Engineering, 28(8), 605–620.CrossRef
go back to reference Zhou, Y. G., & Chen, Y. M. (2005). Influence of seismic cyclic loading history on small strain shear modulus of saturated sands. Soil Dynamics and Earthquake Engineering, 25(5), 341–353.CrossRef Zhou, Y. G., & Chen, Y. M. (2005). Influence of seismic cyclic loading history on small strain shear modulus of saturated sands. Soil Dynamics and Earthquake Engineering, 25(5), 341–353.CrossRef
go back to reference Zhou, Y. G., & Chen, Y. M. (2007). Laboratory investigation on assessing liquefaction resistance of sandy soils by shear wave velocity. Journal of Geotechnical and Geoenvironmental Engineering, 133(8), 959–972.CrossRef Zhou, Y. G., & Chen, Y. M. (2007). Laboratory investigation on assessing liquefaction resistance of sandy soils by shear wave velocity. Journal of Geotechnical and Geoenvironmental Engineering, 133(8), 959–972.CrossRef
go back to reference Zhou, Y. G., Chen, Y. M., & Shamoto, Y. (2009). Verification of the soil-type specific correlation between liquefaction resistance and shear-wave velocity of sand by dynamic centrifuge test. Journal of Geotechnical and Geoenvironmental Engineering, 136(1), 165–177.CrossRef Zhou, Y. G., Chen, Y. M., & Shamoto, Y. (2009). Verification of the soil-type specific correlation between liquefaction resistance and shear-wave velocity of sand by dynamic centrifuge test. Journal of Geotechnical and Geoenvironmental Engineering, 136(1), 165–177.CrossRef
Metadata
Title
Introduction
Authors
Yu Huang
Miao Yu
Copyright Year
2017
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-4379-6_1