Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Introduction

Authors : Guangchen Wang, Zhen Wu, Jie Xiong

Published in: An Introduction to Optimal Control of FBSDE with Incomplete Information

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Stochastic optimal control with incomplete information is composed of filtering and control. The filtering part is related to two stochastic processes: signal and observation. The signal process is what we want to estimate based on the observation which provides the information we can use. Kalman–Bucy filtering is the most successful result in linear filtering theory, which was obtained by Kalman and Bucy [38]. Nonlinear filtering is much more difficult to study. There have been two essentially different approaches so far. One is based on the innovation process, an observable Brownian motion, with the martingale representation theorem. This theory achieved its culmination with the celebrated paper of Fujisaki et al. [25]. See also Liptser and Shiryayev [49] and Kallianpur [36] for a systematic account of this approach. Another approach was introduced by Duncan [18], Mortensen [56], and Zakai [112] independently, who derived a linear stochastic partial differential equation (SPDE) satisfied by the unnormalized conditional density function of the signal. This SPDE is called the Duncan–Mortensen–Zakai equation, or, simply, Zakai’s equation. Unlike the Kalman–Bucy filtering, nonlinear filtering results in infinite-dimensional stochastic processes, whose analytical solutions are rarely available in general. Much effort has been devoted to finding finite-dimensional filters and numerical schemes. See, e.g., Benes̆ [5], Wonham [98], Xiong [104], and Bain and Crisan [2] for the development of this aspect.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Bain, A., Crisan, D.: Fundamentals of Stochastic Filtering. Springer, New York (2009)CrossRef Bain, A., Crisan, D.: Fundamentals of Stochastic Filtering. Springer, New York (2009)CrossRef
5.
go back to reference Benes̆, V.E.: Exact finite dimensional filters for certain diffusions with nonlinear drift. Stochastics 5, 65–92 (1985) Benes̆, V.E.: Exact finite dimensional filters for certain diffusions with nonlinear drift. Stochastics 5, 65–92 (1985)
6.
go back to reference Bensoussan, A.: Stochastic Control of Partially Observable Systems. Cambridge University Press, Cambridge (1992)CrossRef Bensoussan, A.: Stochastic Control of Partially Observable Systems. Cambridge University Press, Cambridge (1992)CrossRef
12.
go back to reference Boswijk, H., Hommes, C., Manzan, S.: Behavioral heterogeneity in stock prices. J. Econ. Dyn. Control 31, 1938–1970 (2007)MathSciNetCrossRef Boswijk, H., Hommes, C., Manzan, S.: Behavioral heterogeneity in stock prices. J. Econ. Dyn. Control 31, 1938–1970 (2007)MathSciNetCrossRef
15.
go back to reference Davis, M.H.A.: The separation principle in stochastic control via Girsanov solutions. SIAM J. Control Optim. 14, 176–188 (1976)MathSciNetCrossRef Davis, M.H.A.: The separation principle in stochastic control via Girsanov solutions. SIAM J. Control Optim. 14, 176–188 (1976)MathSciNetCrossRef
18.
go back to reference Duncan, T.: Doctoral Dissertation. Dept. of Electrical Engineering, Stanford University (1967) Duncan, T.: Doctoral Dissertation. Dept. of Electrical Engineering, Stanford University (1967)
23.
24.
go back to reference Frittelli, M., Rosazza-Gianin, E.: Putting order in risk measures J. Bank. Finance 26, 1473–1486 (2002)CrossRef Frittelli, M., Rosazza-Gianin, E.: Putting order in risk measures J. Bank. Finance 26, 1473–1486 (2002)CrossRef
25.
go back to reference Fujisaki, M., Kallianpur, G., Kunita, H.: Stochastic differential equations for the nonlinear filtering problem. Osaka J. Math. 9, 19–40 (1972)MathSciNetMATH Fujisaki, M., Kallianpur, G., Kunita, H.: Stochastic differential equations for the nonlinear filtering problem. Osaka J. Math. 9, 19–40 (1972)MathSciNetMATH
26.
go back to reference Hu, M.: Stochastic global maximum principle for optimization with recursive utilities. Probab. Uncertain. Quant. Risk 2, 1–20 (2017)MathSciNetCrossRef Hu, M.: Stochastic global maximum principle for optimization with recursive utilities. Probab. Uncertain. Quant. Risk 2, 1–20 (2017)MathSciNetCrossRef
27.
go back to reference Hu, Y., Øksendal, B.: Partial information linear quadratic control for jump diffusions. SIAM J. Control Optim. 47, 1744–1761 (2008)MathSciNetCrossRef Hu, Y., Øksendal, B.: Partial information linear quadratic control for jump diffusions. SIAM J. Control Optim. 47, 1744–1761 (2008)MathSciNetCrossRef
28.
go back to reference Hu, Y., Peng, S.: Solution of forward-backward stochastic differential equations. Probab. Theory Rel. Fields 103, 273–283 (1995)MathSciNetCrossRef Hu, Y., Peng, S.: Solution of forward-backward stochastic differential equations. Probab. Theory Rel. Fields 103, 273–283 (1995)MathSciNetCrossRef
29.
go back to reference Huang, J., Shi, J.: Maximum principle for optimal control of fully coupled forward-backward stochastic differential delayed equations. ESAIM Control Optim. Calc. Var. 18, 1073–1096 (2012)MathSciNetCrossRef Huang, J., Shi, J.: Maximum principle for optimal control of fully coupled forward-backward stochastic differential delayed equations. ESAIM Control Optim. Calc. Var. 18, 1073–1096 (2012)MathSciNetCrossRef
31.
go back to reference Huang, J., Wang, G., Xiong, J.: A maximum principle for partial information backward stochastic control problems with applications. SIAM J. Control Optim. 48, 2106–2117 (2009)MathSciNetCrossRef Huang, J., Wang, G., Xiong, J.: A maximum principle for partial information backward stochastic control problems with applications. SIAM J. Control Optim. 48, 2106–2117 (2009)MathSciNetCrossRef
32.
go back to reference Ji, S., Wei, Q.: A maximum principle for fully coupled forward-backward stochastic control systems with terminal state constraints. J. Math. Anal. Appl. 407, 200–210 (2013)MathSciNetCrossRef Ji, S., Wei, Q.: A maximum principle for fully coupled forward-backward stochastic control systems with terminal state constraints. J. Math. Anal. Appl. 407, 200–210 (2013)MathSciNetCrossRef
33.
go back to reference Joseph, D.P., Tou, T.J.: On linear control theory. Trans. Am. Inst. Electr. Eng. Part II Appl. Ind. 80, 193–196 (1961) Joseph, D.P., Tou, T.J.: On linear control theory. Trans. Am. Inst. Electr. Eng. Part II Appl. Ind. 80, 193–196 (1961)
36.
38.
go back to reference Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. Trans. ASME Ser. D (J. Basic Eng. ASME) 83, 95–108 (1961)MathSciNetCrossRef Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. Trans. ASME Ser. D (J. Basic Eng. ASME) 83, 95–108 (1961)MathSciNetCrossRef
39.
go back to reference Kalman, R.E., Koepcke, R.W.: Optimal synthesis of linear sampling control systems using generalized performance indexes. Trans. ASME 80, 1820–1826 (1958) Kalman, R.E., Koepcke, R.W.: Optimal synthesis of linear sampling control systems using generalized performance indexes. Trans. ASME 80, 1820–1826 (1958)
43.
go back to reference Lakner, P.: Optimal trading strategy for an investor: the case of partial information. Stoch. Proc. Appl. 76, 77–97 (1998)MathSciNetCrossRef Lakner, P.: Optimal trading strategy for an investor: the case of partial information. Stoch. Proc. Appl. 76, 77–97 (1998)MathSciNetCrossRef
45.
go back to reference Li, X., Tang, S.: General necessary conditions for partially observed optimal stochastic controls. J. Appl. Prob. 32, 1118–1137 (1995)MathSciNetCrossRef Li, X., Tang, S.: General necessary conditions for partially observed optimal stochastic controls. J. Appl. Prob. 32, 1118–1137 (1995)MathSciNetCrossRef
46.
go back to reference Li, J., Wei, Q.: Optimal control problems of fully coupled FBSDEs and viscosity solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 52, 1622–1662 (2014)MathSciNetCrossRef Li, J., Wei, Q.: Optimal control problems of fully coupled FBSDEs and viscosity solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 52, 1622–1662 (2014)MathSciNetCrossRef
48.
go back to reference Lim, A.E.B., Zhou, X.: Linear-quadratic control of backward stochastic differential equations. SIAM J. Control Optim. 40, 450–474 (2001)MathSciNetCrossRef Lim, A.E.B., Zhou, X.: Linear-quadratic control of backward stochastic differential equations. SIAM J. Control Optim. 40, 450–474 (2001)MathSciNetCrossRef
49.
go back to reference Liptser, R.S., Shiryayev, A.N.: Statistics of Random Processes. Springer, New York (1977)CrossRef Liptser, R.S., Shiryayev, A.N.: Statistics of Random Processes. Springer, New York (1977)CrossRef
51.
go back to reference Ma, J., Wu, Z., Zhang, D., Zhang, J.: On well-posedness of forward-backward SDEs–a unified approach. Ann. Appl. Probab. 25, 2168–2214 (2015)MathSciNetCrossRef Ma, J., Wu, Z., Zhang, D., Zhang, J.: On well-posedness of forward-backward SDEs–a unified approach. Ann. Appl. Probab. 25, 2168–2214 (2015)MathSciNetCrossRef
52.
go back to reference Ma, J., Yong, J.: Forward-Backward Stochastic Differential Equations and Their Applications. Lecture Notes in Mathematics, vol. 1702. Springer, New York (1999) Ma, J., Yong, J.: Forward-Backward Stochastic Differential Equations and Their Applications. Lecture Notes in Mathematics, vol. 1702. Springer, New York (1999)
54.
go back to reference Meng, Q.: Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems with partial information. Sci. China Ser. A Math. 52, 1579–1588 (2009)MathSciNetCrossRef Meng, Q.: Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems with partial information. Sci. China Ser. A Math. 52, 1579–1588 (2009)MathSciNetCrossRef
55.
56.
go back to reference Mortensen, R.E.: Doctoral Dissertation. Dept. of Electrical Engineering. University of California at Berkeley (1966) Mortensen, R.E.: Doctoral Dissertation. Dept. of Electrical Engineering. University of California at Berkeley (1966)
57.
go back to reference Nagai, H., Peng, S.: Risk-sensitive dynamic portfolio optimization with partial information on infinite time horizon. Ann. Appl. Probab. 12, 173–195 (2002)MathSciNetCrossRef Nagai, H., Peng, S.: Risk-sensitive dynamic portfolio optimization with partial information on infinite time horizon. Ann. Appl. Probab. 12, 173–195 (2002)MathSciNetCrossRef
59.
61.
go back to reference Økesandal, B., Sulem, A.: Maximum principle for optimal control of stochastic differential equations with applications. SIAM J. Control Optim. 48, 2945–2976 (2010)CrossRef Økesandal, B., Sulem, A.: Maximum principle for optimal control of stochastic differential equations with applications. SIAM J. Control Optim. 48, 2945–2976 (2010)CrossRef
66.
go back to reference Peng, S.: A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28, 966–979 (1990)MathSciNetCrossRef Peng, S.: A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28, 966–979 (1990)MathSciNetCrossRef
67.
go back to reference Peng, S.: Backward stochastic differential equations and applications to optimal control. Appl. Math. Optim. 27, 125–144 (1993)MathSciNetCrossRef Peng, S.: Backward stochastic differential equations and applications to optimal control. Appl. Math. Optim. 27, 125–144 (1993)MathSciNetCrossRef
68.
go back to reference Peng, S., Wu, Z.: Fully coupled forward-backward stochastic differential equations and applications to optimal control. SIAM J. Control Optim. 37, 825–843 (1999)MathSciNetCrossRef Peng, S., Wu, Z.: Fully coupled forward-backward stochastic differential equations and applications to optimal control. SIAM J. Control Optim. 37, 825–843 (1999)MathSciNetCrossRef
69.
go back to reference Pham, H.: Continuous-Time Stochastic Control and Optimization with Financial Applications. Stochastic Modelling and Applied Probability, vol. 61. Springer, Berlin (2009)CrossRef Pham, H.: Continuous-Time Stochastic Control and Optimization with Financial Applications. Stochastic Modelling and Applied Probability, vol. 61. Springer, Berlin (2009)CrossRef
72.
go back to reference Shen, B., Wang, Z., Shu, H.: Nonlinear Stochastic Systems with Incomplete Information. Filtering and Control. Springer, London (2013)CrossRef Shen, B., Wang, Z., Shu, H.: Nonlinear Stochastic Systems with Incomplete Information. Filtering and Control. Springer, London (2013)CrossRef
75.
go back to reference Shi, J., Wu, Z.: The maximum principle for fully coupled forward-backward stochastic control system. Acta Automat. Sinica 32, 161–169 (2006)MathSciNet Shi, J., Wu, Z.: The maximum principle for fully coupled forward-backward stochastic control system. Acta Automat. Sinica 32, 161–169 (2006)MathSciNet
76.
go back to reference Simon, H.A.: Dynamic programming under uncertainty with a quadratic criterion function. Econometrica 24, 74–81 (1956)MathSciNetCrossRef Simon, H.A.: Dynamic programming under uncertainty with a quadratic criterion function. Econometrica 24, 74–81 (1956)MathSciNetCrossRef
78.
go back to reference Tang, S.: The maximum principle for partially observed optimal control of stochastic differential equations. SIAM J. Control Optim. 36, 1596–1617 (1998)MathSciNetCrossRef Tang, S.: The maximum principle for partially observed optimal control of stochastic differential equations. SIAM J. Control Optim. 36, 1596–1617 (1998)MathSciNetCrossRef
80.
go back to reference Touzi, N.: Stochastic Control Problems, Viscosity Solutions and Application to Finance. Scuola Normale Superiore di Pisa, Quaderni (2004) Touzi, N.: Stochastic Control Problems, Viscosity Solutions and Application to Finance. Scuola Normale Superiore di Pisa, Quaderni (2004)
84.
go back to reference Wang, G., Wu, Z.: Kalman-Bucy filtering equations of forward and backward stochastic systems and applications to recursive optimal control problems. J. Math. Anal. Appl. 342, 1280–1296 (2008)MathSciNetCrossRef Wang, G., Wu, Z.: Kalman-Bucy filtering equations of forward and backward stochastic systems and applications to recursive optimal control problems. J. Math. Anal. Appl. 342, 1280–1296 (2008)MathSciNetCrossRef
85.
go back to reference Wang, G., Wu, Z.: The maximum principles for stochastic recursive optimal control problems under partial information. IEEE Trans. Automat. Control 54, 1230–1242 (2009)MathSciNetCrossRef Wang, G., Wu, Z.: The maximum principles for stochastic recursive optimal control problems under partial information. IEEE Trans. Automat. Control 54, 1230–1242 (2009)MathSciNetCrossRef
86.
go back to reference Wang, G., Wu, Z.: General maximum principles for partially observed risk-sensitive optimal control problems and applications to finance. J. Optim. Theory Appl. 141, 677–700 (2009)CrossRef Wang, G., Wu, Z.: General maximum principles for partially observed risk-sensitive optimal control problems and applications to finance. J. Optim. Theory Appl. 141, 677–700 (2009)CrossRef
87.
go back to reference Wang, G., Wu, Z.: Mean-variance hedging and forward-backward stochastic differential filtering equations. Abstr. Appl. Anal. 2011, Art. ID 310910, 20 pp. (2011) Wang, G., Wu, Z.: Mean-variance hedging and forward-backward stochastic differential filtering equations. Abstr. Appl. Anal. 2011, Art. ID 310910, 20 pp. (2011)
88.
go back to reference Wang, G., Wu, Z., Xiong, J.: Maximum principles for forward-backward stochastic control systems with correlated state and observation noises. SIAM J. Control Optim. 51, 491–524 (2013)MathSciNetCrossRef Wang, G., Wu, Z., Xiong, J.: Maximum principles for forward-backward stochastic control systems with correlated state and observation noises. SIAM J. Control Optim. 51, 491–524 (2013)MathSciNetCrossRef
89.
go back to reference Wang, G., Wu, Z., Xiong, J.: A linear-quadratic optimal control problem of forward-backward stochastic differential equations with partial information. IEEE Trans. Automat. Control 60, 2904–2916 (2015)MathSciNetCrossRef Wang, G., Wu, Z., Xiong, J.: A linear-quadratic optimal control problem of forward-backward stochastic differential equations with partial information. IEEE Trans. Automat. Control 60, 2904–2916 (2015)MathSciNetCrossRef
90.
go back to reference Wang, G., Xiao, H.: Arrow sufficient conditions for optimality of fully coupled forward-backward stochastic differential equations with applications to finance. J. Optim. Theory Appl. 165, 639–656 (2015)MathSciNetCrossRef Wang, G., Xiao, H.: Arrow sufficient conditions for optimality of fully coupled forward-backward stochastic differential equations with applications to finance. J. Optim. Theory Appl. 165, 639–656 (2015)MathSciNetCrossRef
91.
go back to reference Wang, G., Xiao, H., Xing, G.: An optimal control problem for mean-field forward-backward stochastic differential equation with noisy. Automatica J. IFAC 86, 104–109 (2017)MathSciNetCrossRef Wang, G., Xiao, H., Xing, G.: An optimal control problem for mean-field forward-backward stochastic differential equation with noisy. Automatica J. IFAC 86, 104–109 (2017)MathSciNetCrossRef
94.
go back to reference Wang, G., Yu, Z.: A partial information non-zero sum differential game of backward stochastic differential equations with applications. Automat. J. IFAC 48, 342–352 (2012)MathSciNetCrossRef Wang, G., Yu, Z.: A partial information non-zero sum differential game of backward stochastic differential equations with applications. Automat. J. IFAC 48, 342–352 (2012)MathSciNetCrossRef
95.
go back to reference Wang, G., Zhang, C., Zhang, W.: Stochastic maximum principle for mean-field type optimal control with partial information. IEEE Trans. Automat. Control 59, 522–528 (2014)MathSciNetCrossRef Wang, G., Zhang, C., Zhang, W.: Stochastic maximum principle for mean-field type optimal control with partial information. IEEE Trans. Automat. Control 59, 522–528 (2014)MathSciNetCrossRef
98.
go back to reference Wonham, W.M.: Some applications of stochastic differential equations to optimal nonlinear filtering. SIAM J. Control 2, 347–369 (1965) (1965)MathSciNetCrossRef Wonham, W.M.: Some applications of stochastic differential equations to optimal nonlinear filtering. SIAM J. Control 2, 347–369 (1965) (1965)MathSciNetCrossRef
99.
go back to reference Wu, Z.: Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems. Syst. Sci. Math. Sci. 11, 249–259 (1998)MathSciNetMATH Wu, Z.: Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems. Syst. Sci. Math. Sci. 11, 249–259 (1998)MathSciNetMATH
100.
go back to reference Wu, Z.: A maximum principle for partially observed optimal control of forward-backward stochastic control systems. Sci. China Ser. F Inf. Sci. 53, 1–10 (2010)MathSciNet Wu, Z.: A maximum principle for partially observed optimal control of forward-backward stochastic control systems. Sci. China Ser. F Inf. Sci. 53, 1–10 (2010)MathSciNet
101.
go back to reference Wu, Z.: A general maximum principle for optimal control of forward-backward stochastic systems. Automat. J. IFAC 49, 1473–1480 (2013)MathSciNetCrossRef Wu, Z.: A general maximum principle for optimal control of forward-backward stochastic systems. Automat. J. IFAC 49, 1473–1480 (2013)MathSciNetCrossRef
103.
go back to reference Xiao, H.: The maximum principle for partially observed optimal control of forward-backward stochastic systems with random jumps. J. Syst. Sci. Complex 24, 1083–1099 (2011)MathSciNetCrossRef Xiao, H.: The maximum principle for partially observed optimal control of forward-backward stochastic systems with random jumps. J. Syst. Sci. Complex 24, 1083–1099 (2011)MathSciNetCrossRef
104.
go back to reference Xiong, J.: An Introduction to Stochastic Filtering Theory. Oxford University Press, London (2008)MATH Xiong, J.: An Introduction to Stochastic Filtering Theory. Oxford University Press, London (2008)MATH
107.
go back to reference Yong, J.: Optimality variational principle for controlled forward-backward stochastic differential equations with mixed initial-terminal conditions. SIAM J. Control Optim. 48, 4119–4156 (2010)MathSciNetCrossRef Yong, J.: Optimality variational principle for controlled forward-backward stochastic differential equations with mixed initial-terminal conditions. SIAM J. Control Optim. 48, 4119–4156 (2010)MathSciNetCrossRef
109.
go back to reference Yong, J., Zhou, X.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, New York (1999)CrossRef Yong, J., Zhou, X.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, New York (1999)CrossRef
114.
Metadata
Title
Introduction
Authors
Guangchen Wang
Zhen Wu
Jie Xiong
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-79039-8_1

Premium Partner