Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Introduction

Author : Rakesh Kumar Maurya

Published in: Reciprocating Engine Combustion Diagnostics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The main goal of studying internal combustion (IC) engines is to improve fuel conversion efficiency in the face of increasingly severe energy issues and global warming. The increasing competition among automotive OEMs together with the worsening of environmental pollution has led to the development of complex engine systems. Innovative control strategies are required to simplify and improve the engine management system (EMS), moving toward energy saving and complying with the stringent emission legislation. In this scenario, researchers are focusing on improving conventional combustion engines as well as the development of alternative combustion modes with the utilization of conventional as well as alternative fuels. Present chapter provides a brief introduction of conventional engines (spark ignition and compression ignition) as well as advanced low-temperature combustion engines. To improve the comprehension of engine performance and its combustion reactions, development of the comprehensive performance measurement technique, in-cylinder visualization technique, and numerical simulations is essential and strongly demanded. This chapter describes the need of combustion diagnostics and provides a brief overview of combustion diagnostics using in-cylinder pressure measurement and analysis. Additionally, the chapter presents the summary of the cylinder pressure signal processing methods for calculating combustion parameters and information extracted about engine combustion, performance, and emissions that can be used for further development, optimization, and calibration of modern engines.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Kalghatgi, G. (2018). Is it really the end of internal combustion engines and petroleum in transport? Applied Energy, 225, 965–974.CrossRef Kalghatgi, G. (2018). Is it really the end of internal combustion engines and petroleum in transport? Applied Energy, 225, 965–974.CrossRef
2.
go back to reference Hofmann, J., Guan, D., Chalvatzis, K., & Huo, H. (2016). Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China. Applied Energy, 184, 995–1003.CrossRef Hofmann, J., Guan, D., Chalvatzis, K., & Huo, H. (2016). Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China. Applied Energy, 184, 995–1003.CrossRef
3.
go back to reference Doucette, R. T., & McCulloch, M. D. (2011). Modeling the CO2 emissions from battery electric vehicles given the power generation mixes of different countries. Energy Policy, 39(2), 803–811.CrossRef Doucette, R. T., & McCulloch, M. D. (2011). Modeling the CO2 emissions from battery electric vehicles given the power generation mixes of different countries. Energy Policy, 39(2), 803–811.CrossRef
4.
go back to reference Hawkins, T. R., Singh, B., Majeau-Bettez, G., & Strømman, A. H. (2013). Comparative environmental life cycle assessment of conventional and electric vehicles. Journal of Industrial Ecology, 17(1), 53–64.CrossRef Hawkins, T. R., Singh, B., Majeau-Bettez, G., & Strømman, A. H. (2013). Comparative environmental life cycle assessment of conventional and electric vehicles. Journal of Industrial Ecology, 17(1), 53–64.CrossRef
5.
go back to reference Maurya, R. K. (2018). Characteristics and control of low temperature combustion engines: Employing gasoline, ethanol and methanol. Cham: Springer.CrossRef Maurya, R. K. (2018). Characteristics and control of low temperature combustion engines: Employing gasoline, ethanol and methanol. Cham: Springer.CrossRef
6.
go back to reference Eriksson, L., & Nielsen, L. (2014). Modeling and control of engines and drivelines. Wiley. Eriksson, L., & Nielsen, L. (2014). Modeling and control of engines and drivelines. Wiley.
7.
go back to reference Ganesan, V. (2012). Internal combustion engines. New Delhi: McGraw Hill Education (India) Pvt Ltd. Ganesan, V. (2012). Internal combustion engines. New Delhi: McGraw Hill Education (India) Pvt Ltd.
8.
go back to reference Wang, Y. (2007). Introduction to engine valvetrains. Warrendale, PA: SAE International. Wang, Y. (2007). Introduction to engine valvetrains. Warrendale, PA: SAE International.
9.
go back to reference Hoag, K., & Dondlinger, B. (2016). Vehicular engine design (2nd ed.). Vienna: Springer.CrossRef Hoag, K., & Dondlinger, B. (2016). Vehicular engine design (2nd ed.). Vienna: Springer.CrossRef
10.
go back to reference Pundir, B. P. (2010). IC engines: Combustion and emissions. New Delhi: Narosa Publishing House. Pundir, B. P. (2010). IC engines: Combustion and emissions. New Delhi: Narosa Publishing House.
11.
go back to reference Marko, F., König, G., Schöffler, T., Bohne, S., & Dinkelacker, F. (2016, November). Comparative optical and thermodynamic investigations of high frequency corona-and spark-ignition on a CV natural gas research engine operated with charge dilution by exhaust gas recirculation. In International Conference on Ignition Systems for Gasoline Engines (pp. 293–314). Cham: Springer. Marko, F., König, G., Schöffler, T., Bohne, S., & Dinkelacker, F. (2016, November). Comparative optical and thermodynamic investigations of high frequency corona-and spark-ignition on a CV natural gas research engine operated with charge dilution by exhaust gas recirculation. In International Conference on Ignition Systems for Gasoline Engines (pp. 293–314). Cham: Springer.
12.
go back to reference Morcinkowski, B., Hoppe, P., Hoppe, F., Mally, M., Adomeit, P., Uhlmann, T., … Baumgarten, H. (2016, November). Simulating extreme lean gasoline combustion–flow effects on ignition. In International Conference on Ignition Systems for Gasoline Engines (pp. 87–105). Cham: Springer. Morcinkowski, B., Hoppe, P., Hoppe, F., Mally, M., Adomeit, P., Uhlmann, T., … Baumgarten, H. (2016, November). Simulating extreme lean gasoline combustion–flow effects on ignition. In International Conference on Ignition Systems for Gasoline Engines (pp. 87–105). Cham: Springer.
13.
go back to reference Brandt, M., Hettinger, A., Schneider, A., Senftleben, H., & Skowronek, T. (2016, November). Extension of operating window for modern combustion systems by high performance ignition. In International Conference on Ignition Systems for Gasoline Engines (pp. 26–51). Cham: Springer. Brandt, M., Hettinger, A., Schneider, A., Senftleben, H., & Skowronek, T. (2016, November). Extension of operating window for modern combustion systems by high performance ignition. In International Conference on Ignition Systems for Gasoline Engines (pp. 26–51). Cham: Springer.
14.
go back to reference Badawy, T., Bao, X., & Xu, H. (2017). Impact of spark plug gap on flame kernel propagation and engine performance. Applied Energy, 191, 311–327.CrossRef Badawy, T., Bao, X., & Xu, H. (2017). Impact of spark plug gap on flame kernel propagation and engine performance. Applied Energy, 191, 311–327.CrossRef
15.
go back to reference Heywood, J. B. (1988). Internal combustion engine fundamentals. New York: McGraw-Hill. Heywood, J. B. (1988). Internal combustion engine fundamentals. New York: McGraw-Hill.
16.
go back to reference Sjöberg, M., & Zeng, W. (2016). Combined effects of fuel and dilution type on efficiency gains of lean well-mixed DISI engine operation with enhanced ignition and intake heating for enabling mixed-mode combustion. SAE International Journal of Engines, 9(2), 750–767.CrossRef Sjöberg, M., & Zeng, W. (2016). Combined effects of fuel and dilution type on efficiency gains of lean well-mixed DISI engine operation with enhanced ignition and intake heating for enabling mixed-mode combustion. SAE International Journal of Engines, 9(2), 750–767.CrossRef
17.
go back to reference Ayala, F. A., Gerty, M. D., & Heywood, J. B. (2006). Effects of combustion phasing, relative air-fuel ratio, compression ratio, and load on SI engine efficiency (No. 2006-01-0229). SAE Technical Paper. Ayala, F. A., Gerty, M. D., & Heywood, J. B. (2006). Effects of combustion phasing, relative air-fuel ratio, compression ratio, and load on SI engine efficiency (No. 2006-01-0229). SAE Technical Paper.
18.
go back to reference Zhao, F., Harrington, D. L., & Lai, M. C. D. (2002). Automotive gasoline direct-injection engines (p. 372). Warrendale, PA: Society of Automotive Engineers. Zhao, F., Harrington, D. L., & Lai, M. C. D. (2002). Automotive gasoline direct-injection engines (p. 372). Warrendale, PA: Society of Automotive Engineers.
19.
go back to reference Sjöberg, M., & He, X. (2018). Combined effects of intake flow and spark-plug location on flame development, combustion stability and end-gas autoignition for lean spark-ignition engine operation using E30 fuel. International Journal of Engine Research, 19(1), 86–95.CrossRef Sjöberg, M., & He, X. (2018). Combined effects of intake flow and spark-plug location on flame development, combustion stability and end-gas autoignition for lean spark-ignition engine operation using E30 fuel. International Journal of Engine Research, 19(1), 86–95.CrossRef
20.
go back to reference Dembinski, H. W. (2014). The effects of injection pressure and swirl on in-cylinder flow pattern and combustion in a compression–ignition engine. International Journal of Engine Research, 15(4), 444–459.CrossRef Dembinski, H. W. (2014). The effects of injection pressure and swirl on in-cylinder flow pattern and combustion in a compression–ignition engine. International Journal of Engine Research, 15(4), 444–459.CrossRef
21.
go back to reference Kegl, B., Kegl, M., & Pehan, S. (2013). Green diesel engines. Biodiesel usage in diesel engines. London: Springer.CrossRef Kegl, B., Kegl, M., & Pehan, S. (2013). Green diesel engines. Biodiesel usage in diesel engines. London: Springer.CrossRef
22.
go back to reference Majewski, W. A., & Khair, M. K. (2006). Diesel emissions and their control. Warrendale, PA: SAE International. Majewski, W. A., & Khair, M. K. (2006). Diesel emissions and their control. Warrendale, PA: SAE International.
23.
go back to reference Johnson, T. V. (2002). Diesel emission control: 2001 in review (No. 2002-01-0285). SAE Technical Paper. Johnson, T. V. (2002). Diesel emission control: 2001 in review (No. 2002-01-0285). SAE Technical Paper.
24.
go back to reference Dec, J. E. (2009). Advanced compression-ignition engines—Understanding the in-cylinder processes. Proceedings of the Combustion Institute, 32(2), 2727–2742.CrossRef Dec, J. E. (2009). Advanced compression-ignition engines—Understanding the in-cylinder processes. Proceedings of the Combustion Institute, 32(2), 2727–2742.CrossRef
25.
go back to reference Kitamura, T., Ito, T., Senda, J., & Fujimoto, H. (2002). Mechanism of smokeless diesel combustion with oxygenated fuels based on the dependence of the equivalence ration and temperature on soot particle formation. International Journal of Engine Research, 3(4), 223–248.CrossRef Kitamura, T., Ito, T., Senda, J., & Fujimoto, H. (2002). Mechanism of smokeless diesel combustion with oxygenated fuels based on the dependence of the equivalence ration and temperature on soot particle formation. International Journal of Engine Research, 3(4), 223–248.CrossRef
26.
go back to reference Dempsey, A. B., Curran, S. J., & Wagner, R. M. (2016). A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: Effects of in-cylinder fuel stratification. International Journal of Engine Research, 17(8), 897–917.CrossRef Dempsey, A. B., Curran, S. J., & Wagner, R. M. (2016). A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: Effects of in-cylinder fuel stratification. International Journal of Engine Research, 17(8), 897–917.CrossRef
27.
go back to reference Kim, D., Ekoto, I., Colban, W. F., & Miles, P. C. (2009). In-cylinder CO and UHC imaging in a light-duty diesel engine during PPCI low-temperature combustion. SAE International Journal of Fuels and Lubricants, 1(1), 933–956.CrossRef Kim, D., Ekoto, I., Colban, W. F., & Miles, P. C. (2009). In-cylinder CO and UHC imaging in a light-duty diesel engine during PPCI low-temperature combustion. SAE International Journal of Fuels and Lubricants, 1(1), 933–956.CrossRef
28.
go back to reference Dobbins, R. A. (2002). Soot inception temperature and the carbonization rate of precursor particles. Combustion and Flame, 130(3), 204–214.CrossRef Dobbins, R. A. (2002). Soot inception temperature and the carbonization rate of precursor particles. Combustion and Flame, 130(3), 204–214.CrossRef
29.
go back to reference Musculus, M. P., Miles, P. C., & Pickett, L. M. (2013). Conceptual models for partially premixed low-temperature diesel combustion. Progress in Energy and Combustion Science, 39(2–3), 246–283.CrossRef Musculus, M. P., Miles, P. C., & Pickett, L. M. (2013). Conceptual models for partially premixed low-temperature diesel combustion. Progress in Energy and Combustion Science, 39(2–3), 246–283.CrossRef
30.
go back to reference Huestis, E., Erickson, P. A., & Musculus, M. P. (2007). In-cylinder and exhaust soot in low-temperature combustion using a wide-range of EGR in a heavy-duty diesel engine. SAE Transactions, Paper no - 2007-01-4017, 860–870. Huestis, E., Erickson, P. A., & Musculus, M. P. (2007). In-cylinder and exhaust soot in low-temperature combustion using a wide-range of EGR in a heavy-duty diesel engine. SAE Transactions, Paper no - 2007-01-4017, 860–870.
31.
go back to reference Paulweber, M., & Lebert, K. (2016). Powertrain instrumentation and test systems. Development–hybridization–electrification. Cham: Springer International Publishing. Paulweber, M., & Lebert, K. (2016). Powertrain instrumentation and test systems. Development–hybridization–electrification. Cham: Springer International Publishing.
32.
go back to reference Kohse-Höinghaus, K., Reimann, M., & Guzy, J. (2018). Clean combustion: Chemistry and diagnostics for a systems approach in transportation and energy conversion. Progress in Energy and Combustion Science, 65, 1–5.CrossRef Kohse-Höinghaus, K., Reimann, M., & Guzy, J. (2018). Clean combustion: Chemistry and diagnostics for a systems approach in transportation and energy conversion. Progress in Energy and Combustion Science, 65, 1–5.CrossRef
33.
go back to reference Schafer, F., & Van Basshuysen, R. (Eds.). (2016). Internal combustion engine handbook: Basics, components, systems, and perspectives (2nd ed.). Warrendale, PA: SAE International. Schafer, F., & Van Basshuysen, R. (Eds.). (2016). Internal combustion engine handbook: Basics, components, systems, and perspectives (2nd ed.). Warrendale, PA: SAE International.
34.
go back to reference Schiefer, D., Maennel, R., & Nardoni, W. (2003). Advantages of diesel engine control using in-cylinder pressure information for closed loop control (No. 2003-01-0364). SAE Technical Paper. Schiefer, D., Maennel, R., & Nardoni, W. (2003). Advantages of diesel engine control using in-cylinder pressure information for closed loop control (No. 2003-01-0364). SAE Technical Paper.
35.
go back to reference Atkins, R. D. (2009). An introduction to engine testing and development. Warrendale, PA: Society of Automotive Engineers.CrossRef Atkins, R. D. (2009). An introduction to engine testing and development. Warrendale, PA: Society of Automotive Engineers.CrossRef
36.
go back to reference Maurya, R. K., Pal, D. D., & Agarwal, A. K. (2013). Digital signal processing of cylinder pressure data for combustion diagnostics of HCCI engine. Mechanical Systems and Signal Processing, 36(1), 95–109.CrossRef Maurya, R. K., Pal, D. D., & Agarwal, A. K. (2013). Digital signal processing of cylinder pressure data for combustion diagnostics of HCCI engine. Mechanical Systems and Signal Processing, 36(1), 95–109.CrossRef
Metadata
Title
Introduction
Author
Rakesh Kumar Maurya
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-11954-6_1

Premium Partner