Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Introduction

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The need for materials with higher performances is a strategic issue in engineering. Composite materials, i.e., combining at least two constituents with desired properties like mechanical resistance and lightness, have been developed and applied in many fields of engineering, and are now routinely used in many applications, including automotive industry, aircrafts, drones, biomedicals, wind turbines, sports, and leisure, etc. (see reviews in [16]). On the other hand, heterogeneous materials are found in many other engineering or science fields, such as cementitious materials in civil engineering or biomechanics. More recently, the progress in manufacturing techniques have allowed producing very complex materials like metallic foams (see Fig. 1.1a), or even allowed producing materials with “on demand” microstructures [7, 8] via 3D printing techniques, see Fig. 1.1b. Developing new materials involves synthesis, manufacturing, and testing for certification. This process is long and costly, and usually only involves a “trial and error” procedure, rather than a clear optimization methodology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In the present monograph, we will restrict the presentation to computational homogenization based on finite elements. For techniques based on Fast Fourier Transform, the interested reader can refer to [20].
 
Literature
1.
go back to reference Mouritz AP, Bannister MK, Falzon PJ, Leong KH (1999) Review of applications for advanced three-dimensional fibre textile composites. Compos Part A: Appl Sci Manuf 30(12):1445–1461CrossRef Mouritz AP, Bannister MK, Falzon PJ, Leong KH (1999) Review of applications for advanced three-dimensional fibre textile composites. Compos Part A: Appl Sci Manuf 30(12):1445–1461CrossRef
2.
go back to reference Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83(14):2928–2930CrossRef Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83(14):2928–2930CrossRef
3.
go back to reference Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61(9):1189–1224CrossRef Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61(9):1189–1224CrossRef
4.
go back to reference Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM J Miner Met Mater Soc 58(11):80–86CrossRef Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM J Miner Met Mater Soc 58(11):80–86CrossRef
5.
go back to reference Chawla KK, Chawla N (2014) Metal matrix composites: automotive applications. Encycl Automot Eng Chawla KK, Chawla N (2014) Metal matrix composites: automotive applications. Encycl Automot Eng
6.
go back to reference Gay D (2014) Composite materials: design and applications. CRC Press, Boca Raton Gay D (2014) Composite materials: design and applications. CRC Press, Boca Raton
7.
go back to reference Kokkinis D, Schaffner M, Studart AR (2015) Multimaterial magnetically assisted 3D printing of composite materials. Nat Commun 6:8643CrossRef Kokkinis D, Schaffner M, Studart AR (2015) Multimaterial magnetically assisted 3D printing of composite materials. Nat Commun 6:8643CrossRef
8.
go back to reference Quan Z, Larimore Z, Wu A, Yu J, Qin X, Mirotznik M, Suhr J, Byun J-H, Oh Y, Chou T-W (2016) Microstructural design and additive manufacturing and characterization of 3D orthogonal short carbon fiber/acrylonitrile-butadiene-styrene preform and composite. Compos Sci Technol 126:139–148CrossRef Quan Z, Larimore Z, Wu A, Yu J, Qin X, Mirotznik M, Suhr J, Byun J-H, Oh Y, Chou T-W (2016) Microstructural design and additive manufacturing and characterization of 3D orthogonal short carbon fiber/acrylonitrile-butadiene-styrene preform and composite. Compos Sci Technol 126:139–148CrossRef
9.
go back to reference Cnudde V, Boone MN (2013) High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci Rev 123:1–17CrossRef Cnudde V, Boone MN (2013) High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci Rev 123:1–17CrossRef
10.
go back to reference Buryachenko V (2007) Micromechanics of heterogeneous materials. Springer Science & Business Media, New YorkCrossRef Buryachenko V (2007) Micromechanics of heterogeneous materials. Springer Science & Business Media, New YorkCrossRef
11.
go back to reference Milton GW (2002) Theory of composites. Cambridge University Press, CambridgeCrossRef Milton GW (2002) Theory of composites. Cambridge University Press, CambridgeCrossRef
12.
go back to reference Bornert M (2008) Homogenization in mechanics of materials. ISTE, Newport Beach Bornert M (2008) Homogenization in mechanics of materials. ISTE, Newport Beach
13.
go back to reference Auriault J-L, Boutin C, Geindreau C (2009) Homogénéisation de phénomènes couplés en milieux hétérogènes. Hermès Science Publications Auriault J-L, Boutin C, Geindreau C (2009) Homogénéisation de phénomènes couplés en milieux hétérogènes. Hermès Science Publications
14.
go back to reference Torquato S (2001) Random heterogeneous materials: microstructure and macroscopic properties. Springer, Berlin Torquato S (2001) Random heterogeneous materials: microstructure and macroscopic properties. Springer, Berlin
15.
go back to reference Suquet P (2014) Continuum micromechanics, vol 377. Springer, Berlin Suquet P (2014) Continuum micromechanics, vol 377. Springer, Berlin
16.
17.
go back to reference Li S, Wang G (2008) Introduction to micromechanics and nanomechanics. World Scientific Publication, Singapore Li S, Wang G (2008) Introduction to micromechanics and nanomechanics. World Scientific Publication, Singapore
18.
go back to reference Adams DF, Doner DR (1967) Transverse normal loading of a unidirectional composite. J Compos Mater 1(2):152–164CrossRef Adams DF, Doner DR (1967) Transverse normal loading of a unidirectional composite. J Compos Mater 1(2):152–164CrossRef
19.
go back to reference Suquet P, Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palenzia E, Zaoui A (eds) Homogenization techniques for composite materials. Lecture notes in physics, vol 272 Suquet P, Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palenzia E, Zaoui A (eds) Homogenization techniques for composite materials. Lecture notes in physics, vol 272
20.
go back to reference Michel J-C, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172:109–143MathSciNetCrossRef Michel J-C, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172:109–143MathSciNetCrossRef
21.
go back to reference Renard J, Marmonier MF (1987) Etude de l’initiation de l’endommagement dans la matrice d’un matériau composite par une méthode d’homogénéisation. Aerosp Sci Technol 9:36–51 Renard J, Marmonier MF (1987) Etude de l’initiation de l’endommagement dans la matrice d’un matériau composite par une méthode d’homogénéisation. Aerosp Sci Technol 9:36–51
22.
go back to reference Feyel F (1999) Multiscale FE\(^2\) elastoviscoplastic analysis of composite structure. Comput Mater Sci 16(1–4):433–454 Feyel F (1999) Multiscale FE\(^2\) elastoviscoplastic analysis of composite structure. Comput Mater Sci 16(1–4):433–454
23.
go back to reference Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analysis of heterogeneous media. Comput Methods Appl Mech Eng 190:5427–5464CrossRef Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analysis of heterogeneous media. Comput Methods Appl Mech Eng 190:5427–5464CrossRef
24.
go back to reference Kouznetsova VG, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modeling of heterogeneous materials with gradient enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260CrossRef Kouznetsova VG, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modeling of heterogeneous materials with gradient enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260CrossRef
25.
go back to reference Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234(7):2175–2182CrossRef Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234(7):2175–2182CrossRef
26.
go back to reference Geers MGD, Yvonnet J (2016) Multiscale modeling of microstructure-property relations. MRS Bull 41(08):610–616CrossRef Geers MGD, Yvonnet J (2016) Multiscale modeling of microstructure-property relations. MRS Bull 41(08):610–616CrossRef
27.
go back to reference Schroeder J, Labusch M, Keip M-A (2016) Algorithmic two-scale transition for magneto-electro-mechanically coupled problems: FE2-scheme: localization and homogenization. Comput Methods Appl Mech Eng 302:253–280CrossRef Schroeder J, Labusch M, Keip M-A (2016) Algorithmic two-scale transition for magneto-electro-mechanically coupled problems: FE2-scheme: localization and homogenization. Comput Methods Appl Mech Eng 302:253–280CrossRef
28.
go back to reference Patel B, Zohdi TI (2016) Numerical estimation of effective electromagnetic properties for design of particulate composites. Mater Des 94:546–553CrossRef Patel B, Zohdi TI (2016) Numerical estimation of effective electromagnetic properties for design of particulate composites. Mater Des 94:546–553CrossRef
29.
go back to reference Krushynska AO, Kouznetsova VG, Geers MGD (2014) Towards optimal design of locally resonant acoustic metamaterials. J Mech Phys Solids 71:179–196CrossRef Krushynska AO, Kouznetsova VG, Geers MGD (2014) Towards optimal design of locally resonant acoustic metamaterials. J Mech Phys Solids 71:179–196CrossRef
30.
go back to reference Escoda J, Willot F, Jeulin D, Sanahuja J, Toulemonde C (2011) Estimation of local stresses and elastic properties of a mortar sample by FFT computation of fields on a 3D image. Cem Concr Res 41(5):542–556CrossRef Escoda J, Willot F, Jeulin D, Sanahuja J, Toulemonde C (2011) Estimation of local stresses and elastic properties of a mortar sample by FFT computation of fields on a 3D image. Cem Concr Res 41(5):542–556CrossRef
31.
go back to reference Yvonnet J, Gonzalez D, He Q-C (2009) Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Comput Methods Appl Mech Eng 198:2723–2737CrossRef Yvonnet J, Gonzalez D, He Q-C (2009) Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Comput Methods Appl Mech Eng 198:2723–2737CrossRef
32.
go back to reference Coenen EWC, Kouznetsova VG, Bosco E, Geers MGD (2012) A multi-scale approach to bridge microscale damage and macroscale failure: a nested computational homogenization-localization framework. Int J Fract 178(1–2):157–178CrossRef Coenen EWC, Kouznetsova VG, Bosco E, Geers MGD (2012) A multi-scale approach to bridge microscale damage and macroscale failure: a nested computational homogenization-localization framework. Int J Fract 178(1–2):157–178CrossRef
33.
go back to reference Bosco E, Kouznetsova VG, Geers MGD (2015) Multi-scale computational homogenization–localization for propagating discontinuities using X-FEM. Comput Methods Appl Mech Eng 102(3–4):496–527MathSciNetMATH Bosco E, Kouznetsova VG, Geers MGD (2015) Multi-scale computational homogenization–localization for propagating discontinuities using X-FEM. Comput Methods Appl Mech Eng 102(3–4):496–527MathSciNetMATH
34.
go back to reference Oliver J, Caicedo M, Roubin E, Huespe AE, Hernández JA (2015) Continuum approach to computational multiscale modeling of propagating fracture. Comput Methods Appl Mech Eng 294:384–427MathSciNetCrossRef Oliver J, Caicedo M, Roubin E, Huespe AE, Hernández JA (2015) Continuum approach to computational multiscale modeling of propagating fracture. Comput Methods Appl Mech Eng 294:384–427MathSciNetCrossRef
35.
go back to reference Clément A, Soize C, Yvonnet J (2013) Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials. Comput Methods Appl Mech Eng 254:61–82MathSciNetCrossRef Clément A, Soize C, Yvonnet J (2013) Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials. Comput Methods Appl Mech Eng 254:61–82MathSciNetCrossRef
39.
go back to reference Zohdi TI, Wriggers P (2008) An introduction to computational micromechanics. Springer Science & Business Media, New York Zohdi TI, Wriggers P (2008) An introduction to computational micromechanics. Springer Science & Business Media, New York
40.
go back to reference Ghosh S, Dimiduk DM (2011) Computational methods for microstructure-property relationships. Springer, Berlin Ghosh S, Dimiduk DM (2011) Computational methods for microstructure-property relationships. Springer, Berlin
41.
go back to reference Fish J (2013) Practical multiscaling. Wiley, New York Fish J (2013) Practical multiscaling. Wiley, New York
42.
go back to reference Forest S (2006) Milieux continus généralisés et matériaux hétérogènes. Presses des MINES Forest S (2006) Milieux continus généralisés et matériaux hétérogènes. Presses des MINES
Metadata
Title
Introduction
Author
Julien Yvonnet
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-18383-7_1

Premium Partner