Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

1. Introduction

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hydraulic transients represent highly complex fluid flow processes. They are encountered at almost all hydropower stations as well as at water supply networks, when the hydraulic systems are getting regulated, started-up or shut-down. Each time and under certain conditions, hydraulic transients often lead to various undesirable occurrences like rapid pressure rises, cavitations with noises, system instability, and cumulative fatigue of pipe materials. All these phenomena are usually well controlled based on optimized system designs and operations. Uncontrolled hydraulic transients in hydropower stations, for instance, take place at load rejections or emergency shut-downs of hydraulic machines like pumps and turbines. Because each occurrence of hydraulic transients leads to remarkable and rapid pressure rise in considered hydraulic systems, the phenomenon is in engineering applications also called pressure shock or water hammer. It represents a very important sub-discipline of fluid mechanics and has drawn great attention in related fields.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The notion “relatively short” designates the boundary between two theories, beyond which the rigid water column theory does not reflect the real flow conditions and will lead to computation errors, see Sect. 3.​2.​1. In practical applications, the condition “short pipes” is usually always fulfilled.
 
Literature
go back to reference Abuiziah, I., Oulhaj, A., Sebari, K., & Ouazar, D. (2014). Comparative study on status and development of transient flow analysis including simple surge tank. International Scholarly and Scientific Research & Innovation, 8(2). Abuiziah, I., Oulhaj, A., Sebari, K., & Ouazar, D. (2014). Comparative study on status and development of transient flow analysis including simple surge tank. International Scholarly and Scientific Research & Innovation, 8(2).
go back to reference Adamkowski, A., & Lewandowski, M. (2006). Experimental examination of unsteady friction models for transient pipe flow simulation. Journal of Fluids Engineering, 128, 1351–1363.CrossRef Adamkowski, A., & Lewandowski, M. (2006). Experimental examination of unsteady friction models for transient pipe flow simulation. Journal of Fluids Engineering, 128, 1351–1363.CrossRef
go back to reference Allievi, L. (1902). General theory of the variable flow of water in pressure conducts, see “Theory of Water Hammer” (E. E. Halmos, Trans.). Typography Riccardo Garoni, Rome, 1925. Allievi, L. (1902). General theory of the variable flow of water in pressure conducts, see “Theory of Water Hammer” (E. E. Halmos, Trans.). Typography Riccardo Garoni, Rome, 1925.
go back to reference Bergant, A., & Simpson, A. R. (1994). Estimating unsteady friction in transient cavitating pipe flow. In Proceedings 2nd International Conference on Water Pipeline Systems (pp. 333–342). Edinburg, Scotland. Bergant, A., & Simpson, A. R. (1994). Estimating unsteady friction in transient cavitating pipe flow. In Proceedings 2nd International Conference on Water Pipeline Systems (pp. 333–342). Edinburg, Scotland.
go back to reference Bergant, A., Simpson, A. R., & Vitkovsky, J. (1999). Review of unsteady friction models in transient pipe flow. In 9th International Meeting on the Behaviour of Hydraulic Machinery Under Steady Oscillatory Conditions. Brno, Czech Republic: IAHR. Bergant, A., Simpson, A. R., & Vitkovsky, J. (1999). Review of unsteady friction models in transient pipe flow. In 9th International Meeting on the Behaviour of Hydraulic Machinery Under Steady Oscillatory Conditions. Brno, Czech Republic: IAHR.
go back to reference Bergant, A., Simpson, A. R., & Vitkovsky, J. (2001). Developments in unsteady pipe flow friction modelling. Journal of Hydraulic Research, 39(3), 249–257.CrossRef Bergant, A., Simpson, A. R., & Vitkovsky, J. (2001). Developments in unsteady pipe flow friction modelling. Journal of Hydraulic Research, 39(3), 249–257.CrossRef
go back to reference Brunone, B., Golia, U. M., & Greco, M. (1991). Some remarks on the momentum equations for fast transients. In IAHR, Proceedings of Meeting on Hydraulic Transients with Column Separation, 9th Round Table. Valencia, Spain. Brunone, B., Golia, U. M., & Greco, M. (1991). Some remarks on the momentum equations for fast transients. In IAHR, Proceedings of Meeting on Hydraulic Transients with Column Separation, 9th Round Table. Valencia, Spain.
go back to reference Brunone, B., Golia, U. M., & Greco, M. (1995). Effects of two dimensionality on pipe transients modeling. Journal of Hydraulic Engineering, 121(12), 906–912.CrossRef Brunone, B., Golia, U. M., & Greco, M. (1995). Effects of two dimensionality on pipe transients modeling. Journal of Hydraulic Engineering, 121(12), 906–912.CrossRef
go back to reference Chaudhry, M. H. (2014). Applied hydraulic transients (3rd ed.). New York Inc: Springer-Verlag.CrossRef Chaudhry, M. H. (2014). Applied hydraulic transients (3rd ed.). New York Inc: Springer-Verlag.CrossRef
go back to reference Dubs, R. (1947). Angewandte hydraulik. Zurich: City-Druck. Dubs, R. (1947). Angewandte hydraulik. Zurich: City-Druck.
go back to reference Frizell, J. P. (1898). Pressures resulting from changes of velocity of water in pipes. Transactions of the American Society of Civil Engineers, 39, 1–18 (paper 819). Frizell, J. P. (1898). Pressures resulting from changes of velocity of water in pipes. Transactions of the American Society of Civil Engineers, 39, 1–18 (paper 819).
go back to reference Ghidaoui, M. S., Zhao, M., McInnis, D. A., & Axworthy, D. H. (2005). A review of water hammer theory and practice. Applied Mechanics Reviews, Transactions of the ASME, 58, 49–76.CrossRef Ghidaoui, M. S., Zhao, M., McInnis, D. A., & Axworthy, D. H. (2005). A review of water hammer theory and practice. Applied Mechanics Reviews, Transactions of the ASME, 58, 49–76.CrossRef
go back to reference Giesecke, J., & Mosonyi, E. (2009). Wasserkraftanlagen, 5. Auflage. Springer-Verlag. Giesecke, J., & Mosonyi, E. (2009). Wasserkraftanlagen, 5. Auflage. Springer-Verlag.
go back to reference Gray, C. A. M. (1953). The analysis of the dissipation of energy in water hammer. Proceeding ASCE, 119, 1176–1194 (paper 274). Gray, C. A. M. (1953). The analysis of the dissipation of energy in water hammer. Proceeding ASCE, 119, 1176–1194 (paper 274).
go back to reference Hino, M., Sawamoto, M., & Takasu, S. (1977). Study on the transition to turbulence and frictional coefficient in an oscillatory pipe flow. Transactions of the Japan Society of Mechanical Engineers, 9, 282–284. Hino, M., Sawamoto, M., & Takasu, S. (1977). Study on the transition to turbulence and frictional coefficient in an oscillatory pipe flow. Transactions of the Japan Society of Mechanical Engineers, 9, 282–284.
go back to reference Horlacher, H., & Lüdecke, H. (2012). Strömungsberechnung für Rohrsystem. Expert Verlag. Horlacher, H., & Lüdecke, H. (2012). Strömungsberechnung für Rohrsystem. Expert Verlag.
go back to reference Jaeger, C. (1949). Technische Hydraulik. Verlag Birkhäuser Basel. Jaeger, C. (1949). Technische Hydraulik. Verlag Birkhäuser Basel.
go back to reference Joukowsky, N. E. (1898). Waterhammer, Memoirs Imperial Academy Society of St. Petersburg, (Vol. 9, No. 5) (in Russian). In O. Simin (Trans.). (1904), Proceeding American Water Works Association (Vol. 24, pp. 341–424). Joukowsky, N. E. (1898). Waterhammer, Memoirs Imperial Academy Society of St. Petersburg, (Vol. 9, No. 5) (in Russian). In O. Simin (Trans.). (1904), Proceeding American Water Works Association (Vol. 24, pp. 341–424).
go back to reference Lambert, M. F., Vitkovsky, J. P., Simpson, A. R., & Bergant, A. (2001). A boundary layer growth model for one-dimensional turbulent unsteady pipe friction. In 14th Australasian Fluid Mechanics Conference. Adelaide, Australia: Adelaide University, 10–14 December 2001. Lambert, M. F., Vitkovsky, J. P., Simpson, A. R., & Bergant, A. (2001). A boundary layer growth model for one-dimensional turbulent unsteady pipe friction. In 14th Australasian Fluid Mechanics Conference. Adelaide, Australia: Adelaide University, 10–14 December 2001.
go back to reference Löwy, R. (1928). Druckschwankungen in Druckrohrleitungen. Wien: Julius Springer.MATH Löwy, R. (1928). Druckschwankungen in Druckrohrleitungen. Wien: Julius Springer.MATH
go back to reference Najm, H. N., Azoury, P. H., & Piasecki, M. (1999). Hydraulic ram analysis: A new look at an old problem. Proceedings of the Institution of Mechanical Engineers, Part A, Journal of Power and Energy, 213(2), 127–141.CrossRef Najm, H. N., Azoury, P. H., & Piasecki, M. (1999). Hydraulic ram analysis: A new look at an old problem. Proceedings of the Institution of Mechanical Engineers, Part A, Journal of Power and Energy, 213(2), 127–141.CrossRef
go back to reference Nicolet, C., Allenbach, P., Simond, J., & Avellan, F. (2007). Modeling and numerical simulation of a complete hydroelectric production site. Powertech, 2007 IEEE Lausanne, Switzerland, July 2007. Nicolet, C., Allenbach, P., Simond, J., & Avellan, F. (2007). Modeling and numerical simulation of a complete hydroelectric production site. Powertech, 2007 IEEE Lausanne, Switzerland, July 2007.
go back to reference Pezzinga, G. (1999). Quasi-2D model for unsteady flow in pipe networks. Journal of Hydraulic Engineering, 125(7), 676–685.CrossRef Pezzinga, G. (1999). Quasi-2D model for unsteady flow in pipe networks. Journal of Hydraulic Engineering, 125(7), 676–685.CrossRef
go back to reference Pezzinga, G. (2000). Evaluation of unsteady flow resistances by quasi-2D or 1D models. Journal of Hydraulic Engineering, 126(10), 778–785.CrossRef Pezzinga, G. (2000). Evaluation of unsteady flow resistances by quasi-2D or 1D models. Journal of Hydraulic Engineering, 126(10), 778–785.CrossRef
go back to reference Popescu, M., Arsenie, D., & Vlase, P. (2003). Applied hydraulic transients for hydropower plants and pumping stations. AA Balkema Publishers. Popescu, M., Arsenie, D., & Vlase, P. (2003). Applied hydraulic transients for hydropower plants and pumping stations. AA Balkema Publishers.
go back to reference Rathore, V., Ahmad, Z., & Kashyap, D. (2015). Modelling of transient flow in pipes with dynamic friction. In 20th International Conference on Hydraulics, Water Resources and River Engineering. Roorkee, India. Rathore, V., Ahmad, Z., & Kashyap, D. (2015). Modelling of transient flow in pipes with dynamic friction. In 20th International Conference on Hydraulics, Water Resources and River Engineering. Roorkee, India.
go back to reference Sharp, B. (1981). Water hammer, problems and solutions. Edward Arnold (publishers) Ltd. Sharp, B. (1981). Water hammer, problems and solutions. Edward Arnold (publishers) Ltd.
go back to reference Shamloo, H., Norooz, R., & Mousavifard, M. (2015). A review of one-dimensional unsteady friction models for transient pipe flow. In Second National Conference on Applied Research in Science and Technology, Science Journal (CSJ), Special Issue (Vol. 36, No. 3). Shamloo, H., Norooz, R., & Mousavifard, M. (2015). A review of one-dimensional unsteady friction models for transient pipe flow. In Second National Conference on Applied Research in Science and Technology, Science Journal (CSJ), Special Issue (Vol. 36, No. 3).
go back to reference Streeter, V. L., & Lai, C. (1962). Waterhammer analysis including fluid friction. Journal of the Hydraulics Division, ASCE, 88(HY3), 79–112. Streeter, V. L., & Lai, C. (1962). Waterhammer analysis including fluid friction. Journal of the Hydraulics Division, ASCE, 88(HY3), 79–112.
go back to reference Thoma, D. (1910). Theorie des Wasserschlosses bei selbsttätig geregelten Turbinenanlagen. Dissertation, Kgl. Technische Hochschule zu München, Oldenburg in München, Germany. Thoma, D. (1910). Theorie des Wasserschlosses bei selbsttätig geregelten Turbinenanlagen. Dissertation, Kgl. Technische Hochschule zu München, Oldenburg in München, Germany.
go back to reference Tijsseling, A. S., & Anderson, A. (2004). A precursor in waterhammer analysis, rediscovering Johannes von Kries (RANA: Reports on applied and numerical analysis; Vol. 0402). Eindhoven: Technische Universiteit Eindhoven. Tijsseling, A. S., & Anderson, A. (2004). A precursor in waterhammer analysis, rediscovering Johannes von Kries (RANA: Reports on applied and numerical analysis; Vol. 0402). Eindhoven: Technische Universiteit Eindhoven.
go back to reference Tijsseling, A. S., & Anderson, A. (2006, January). The Joukowsky equation for fluids and solids. Journal of Scientific Computing. Tijsseling, A. S., & Anderson, A. (2006, January). The Joukowsky equation for fluids and solids. Journal of Scientific Computing.
go back to reference Tijsseling, A. S., & Anderson, A. (2007, January). Johannes von Kries and the history of water hammer. Journal of Hydraulic Engineering, ASCE. Tijsseling, A. S., & Anderson, A. (2007, January). Johannes von Kries and the history of water hammer. Journal of Hydraulic Engineering, ASCE.
go back to reference Urbanowicz, K. (2017). Analytical expressions for effective weighting functions used during simulations of water hammer. Journal of Theoretical and Applied Mechanics, 55(3), 1029–1040.CrossRef Urbanowicz, K. (2017). Analytical expressions for effective weighting functions used during simulations of water hammer. Journal of Theoretical and Applied Mechanics, 55(3), 1029–1040.CrossRef
go back to reference Vardy, A. E. (1992). Approximating unsteady friction at high Reynolds numbers. In Proceedings International Conference on Unsteady Flow and Fluid Transients (pp. 21–29). Durham, England. Vardy, A. E. (1992). Approximating unsteady friction at high Reynolds numbers. In Proceedings International Conference on Unsteady Flow and Fluid Transients (pp. 21–29). Durham, England.
go back to reference Vardy, A. E., & Brown, J. M. B. (1995). Transient, turbulent, smooth pipe friction. Journal of Hydraulic Research, 33(4), 435–456.CrossRef Vardy, A. E., & Brown, J. M. B. (1995). Transient, turbulent, smooth pipe friction. Journal of Hydraulic Research, 33(4), 435–456.CrossRef
go back to reference Vardy, A. E., & Brown, J. M. B. (2003). Transient turbulent friction in smooth pipe flows. Journal Sound and Vibration, 259(5), 1011–1036.CrossRef Vardy, A. E., & Brown, J. M. B. (2003). Transient turbulent friction in smooth pipe flows. Journal Sound and Vibration, 259(5), 1011–1036.CrossRef
go back to reference Vardy, A. E., & Brown, J. M. B. (2004). Transient turbulent friction in fully rough pipe flows. Journal Sound and Vibration, 270(12), 233–257.CrossRef Vardy, A. E., & Brown, J. M. B. (2004). Transient turbulent friction in fully rough pipe flows. Journal Sound and Vibration, 270(12), 233–257.CrossRef
go back to reference Vardy, A. E., & Hwang, K. L. (1991). A characteristics model of transient friction in pipes. Journal of Hydraulic Research, 29(5), 669–684.CrossRef Vardy, A. E., & Hwang, K. L. (1991). A characteristics model of transient friction in pipes. Journal of Hydraulic Research, 29(5), 669–684.CrossRef
go back to reference Vitkovsky, J., Bergant, A., Simpson, A., & Lambert, M. (2006). Systematic evaluation of one-dimensional unsteady friction models in simple pipelines. Journal of Hydraulic Engineering Division of the American Society of Civil Engineers, 132(7), 696–708.CrossRef Vitkovsky, J., Bergant, A., Simpson, A., & Lambert, M. (2006). Systematic evaluation of one-dimensional unsteady friction models in simple pipelines. Journal of Hydraulic Engineering Division of the American Society of Civil Engineers, 132(7), 696–708.CrossRef
go back to reference Vitkovsky, J., Lambert, M., Simpson, A., & Bergant, A. (2000). Advances in unsteady friction modelling in transient pipe flow. In 8th International Conference on Pressure Surges. The Hague, The Netherlands: BHR. Vitkovsky, J., Lambert, M., Simpson, A., & Bergant, A. (2000). Advances in unsteady friction modelling in transient pipe flow. In 8th International Conference on Pressure Surges. The Hague, The Netherlands: BHR.
go back to reference Wood, D. J., Dorsch, R., & Lightner, C. (1966). Wave analysis of unsteady flow in conduits. Journal of Hydraulics Division, ASCE, 92(HY2), 83–110. Wood, D. J., Dorsch, R., & Lightner, C. (1966). Wave analysis of unsteady flow in conduits. Journal of Hydraulics Division, ASCE, 92(HY2), 83–110.
go back to reference Wood, D. J., Lingireddy, S., Boulos, P. F., Karney, B. W., & Mcpherson, D. L. (2005). Numerical method for modeling transient flow. Journal AWWA, 97–7, 104–115.CrossRef Wood, D. J., Lingireddy, S., Boulos, P. F., Karney, B. W., & Mcpherson, D. L. (2005). Numerical method for modeling transient flow. Journal AWWA, 97–7, 104–115.CrossRef
go back to reference Wylie, E. B., & Streeter, V. L. (1993). Fluid transients in systems. Englewood Cliffs, USA: Prentice-Hall. Wylie, E. B., & Streeter, V. L. (1993). Fluid transients in systems. Englewood Cliffs, USA: Prentice-Hall.
go back to reference Zhang, Z. (2009). Druckstossberechnung beim Schliessen der Peltonturbine in Grimsel 1. Technical report. Oberhasli Hydroelectric Power Company (KWO), Innertkirchen, Switzerland, Nr. KWO_TB09_00x, 16, Juni 2009. Zhang, Z. (2009). Druckstossberechnung beim Schliessen der Peltonturbine in Grimsel 1. Technical report. Oberhasli Hydroelectric Power Company (KWO), Innertkirchen, Switzerland, Nr. KWO_TB09_00x, 16, Juni 2009.
go back to reference Zhang, Z. (2012). Hydrodynamisches Verhalten von Wasserschlössern im Triebwassersystems Gr2 und Gr3. Technical report. Oberhasli Hydroelectric Power Company (KWO), Innertkirchen, Switzerland, Nr. A000246540. Zhang, Z. (2012). Hydrodynamisches Verhalten von Wasserschlössern im Triebwassersystems Gr2 und Gr3. Technical report. Oberhasli Hydroelectric Power Company (KWO), Innertkirchen, Switzerland, Nr. A000246540.
go back to reference Zhang, Z. (2018, August). Wave tracking method of hydraulic transients in pipe systems with pump shut-off under simultaneous closing of spherical valves. Journal of Renewable Energy, 132, 157–166.CrossRef Zhang, Z. (2018, August). Wave tracking method of hydraulic transients in pipe systems with pump shut-off under simultaneous closing of spherical valves. Journal of Renewable Energy, 132, 157–166.CrossRef
go back to reference Zhao, M., & Ghidaoui, M. S. (2004). Review and analysis of 1D and 2D energy dissipation models for transient flows. In Proceedings International Conference on Pressure Surges (pp. 477–492). Bedford, UK: BHR. Zhao, M., & Ghidaoui, M. S. (2004). Review and analysis of 1D and 2D energy dissipation models for transient flows. In Proceedings International Conference on Pressure Surges (pp. 477–492). Bedford, UK: BHR.
go back to reference Zielke, W. (1968). Frequency-dependent friction in transient pipe flow. Journal of Basic Engineering, ASME, 90(1), 109–115.CrossRef Zielke, W. (1968). Frequency-dependent friction in transient pipe flow. Journal of Basic Engineering, ASME, 90(1), 109–115.CrossRef
Metadata
Title
Introduction
Author
Zh. Zhang
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-40233-4_1

Premium Partners