Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

1. Introduction

Author : Ranjan Ganguli

Published in: Structural Health Monitoring

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Structures are prone to degradation and damage over their service life. Damage detection is one of the main aspects of structural engineering both for safety reasons and because of economic benefits that can result from the prevention of failure. Many nondestructive testing methods for structural health monitoring have been proposed over the past few decades.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pawar, P. M., & Ganguli, R. (2003). Genetic fuzzy system for damage detection in beams and helicopter rotor blades. Computer Methods Applied Mechanics and Engineering, 192(16–18), 2031–2057.MATH Pawar, P. M., & Ganguli, R. (2003). Genetic fuzzy system for damage detection in beams and helicopter rotor blades. Computer Methods Applied Mechanics and Engineering, 192(16–18), 2031–2057.MATH
2.
go back to reference Montalvao, D., Maia, N. M. M., & Ribeiro, A. M. R. (2006). A review of vibration-based structural health monitoring with special emphasis on composite materials. The Shock and Vibration Digest, 38(4), 295–324. Montalvao, D., Maia, N. M. M., & Ribeiro, A. M. R. (2006). A review of vibration-based structural health monitoring with special emphasis on composite materials. The Shock and Vibration Digest, 38(4), 295–324.
3.
go back to reference Doebling, S. W., Farrar, C. R., & Prime, M. B. (1998). A summary review of vibration based damage identification methods. Shock and Vibration Digest, 30(3), 91–105. Doebling, S. W., Farrar, C. R., & Prime, M. B. (1998). A summary review of vibration based damage identification methods. Shock and Vibration Digest, 30(3), 91–105.
4.
go back to reference Salawu, O. S. (1997). Detection of structural damage through changes in frequency: A review. Engineering Structures, 19(9), 718–723. Salawu, O. S. (1997). Detection of structural damage through changes in frequency: A review. Engineering Structures, 19(9), 718–723.
5.
go back to reference O’Hagan, A., & Oakley, J. E. (2004). Probability is perfect, but we can’t elicit it perfectly. Reliability Engineering and System Safety, 85(1–3), 239–248. O’Hagan, A., & Oakley, J. E. (2004). Probability is perfect, but we can’t elicit it perfectly. Reliability Engineering and System Safety, 85(1–3), 239–248.
6.
go back to reference Xia, Y., et al. (2002). Damage identification of structures with uncertain frequency and mode shape data. Earthquake Engineering and Structural Dynamics, 31(5), 1053–66. Xia, Y., et al. (2002). Damage identification of structures with uncertain frequency and mode shape data. Earthquake Engineering and Structural Dynamics, 31(5), 1053–66.
7.
go back to reference Cheng, J., & Xiao, R. C. (2007). Probabilistic free vibration analysis of beams subjected to axial loads. Advances in Engineering Software, 38(1), 31–38. Cheng, J., & Xiao, R. C. (2007). Probabilistic free vibration analysis of beams subjected to axial loads. Advances in Engineering Software, 38(1), 31–38.
8.
go back to reference Melchers, R. E. (1999). Structural reliability analysis and prediction. New York: Wiley. Melchers, R. E. (1999). Structural reliability analysis and prediction. New York: Wiley.
9.
go back to reference Haldar, A., & Mahadevan, S. (2000). Reliability assessment using stochastic finite element analysis. New York: Wiley. Haldar, A., & Mahadevan, S. (2000). Reliability assessment using stochastic finite element analysis. New York: Wiley.
10.
go back to reference Hofer, E., Kloos, M., Krzykacz-Hausmanna, B., Peschkea, J., & Woltereckb, M. (2002). An approximate epistemic uncertainty analysis approach in the presence of epistemic and aleatory uncertainties. Reliability Engineering and System Safety, 77(3), 229–238. Hofer, E., Kloos, M., Krzykacz-Hausmanna, B., Peschkea, J., & Woltereckb, M. (2002). An approximate epistemic uncertainty analysis approach in the presence of epistemic and aleatory uncertainties. Reliability Engineering and System Safety, 77(3), 229–238.
11.
go back to reference Liu, P. L. (1995). Identification and damage detection of trusses using modal data. Journal of Structural Engineering, American Society of Civil Engineers, 121(4), 599–608. Liu, P. L. (1995). Identification and damage detection of trusses using modal data. Journal of Structural Engineering, American Society of Civil Engineers, 121(4), 599–608.
12.
go back to reference Papadopoulos, L., & Garcia, E. (1998). Structural damage identification: a probabilistic approach. American Institute of Aeronautics and Astronautics Journal, 36(11), 2137–2145. Papadopoulos, L., & Garcia, E. (1998). Structural damage identification: a probabilistic approach. American Institute of Aeronautics and Astronautics Journal, 36(11), 2137–2145.
13.
go back to reference Ganguli, R. (2001). A fuzzy logic system for ground based structural health monitoring of a helicopter rotor using modal data. Journal of Intelligent Material Systems and Structures, 12(6), 397–407. Ganguli, R. (2001). A fuzzy logic system for ground based structural health monitoring of a helicopter rotor using modal data. Journal of Intelligent Material Systems and Structures, 12(6), 397–407.
14.
go back to reference Pawar, P. M., & Ganguli, R. (2007). Genetic fuzzy system for online structural health monitoring of composite helicopter rotor blades. Mechanical Systems and Signal Processing, 21(5), 2212–2236. Pawar, P. M., & Ganguli, R. (2007). Genetic fuzzy system for online structural health monitoring of composite helicopter rotor blades. Mechanical Systems and Signal Processing, 21(5), 2212–2236.
15.
go back to reference Sawyer, J. P., & Rao, S. S. (2000). Structural damage detection and identification using fuzzy logic. AIAA Journal, 38(12), 2328–2335. Sawyer, J. P., & Rao, S. S. (2000). Structural damage detection and identification using fuzzy logic. AIAA Journal, 38(12), 2328–2335.
16.
go back to reference Hoon, S. (2002). Statistical damage classification under changing environmental and operational conditions. Journal of Intelligent Material Systems and Structures, 13(9), 561–574. Hoon, S. (2002). Statistical damage classification under changing environmental and operational conditions. Journal of Intelligent Material Systems and Structures, 13(9), 561–574.
17.
go back to reference Chang, C. C., Chang, T. Y. P., Xu, Y. G., & Wang, M. C. (2000). Structural damage detection using an iterative neural network. Journal of Intelligent Material Systems and Structures, 11(1), 32–42. Chang, C. C., Chang, T. Y. P., Xu, Y. G., & Wang, M. C. (2000). Structural damage detection using an iterative neural network. Journal of Intelligent Material Systems and Structures, 11(1), 32–42.
18.
go back to reference Collins, J. D., Hart, G. C., Hasselman, T. K., & Kennedt, K. (1974). System identification of structures. American Institute of Aeronautics and Astronautics Journal, 12(2), 185–190. Collins, J. D., Hart, G. C., Hasselman, T. K., & Kennedt, K. (1974). System identification of structures. American Institute of Aeronautics and Astronautics Journal, 12(2), 185–190.
19.
go back to reference Chen, S. H., Guo, K. J., & Chen, Y. D. (2004). A method for estimating upper and lower bounds of eigenvalues of closed-loop systems with uncertain parameters. Journal of Sound and Vibration, 276(3–5), 527–539.MathSciNetMATH Chen, S. H., Guo, K. J., & Chen, Y. D. (2004). A method for estimating upper and lower bounds of eigenvalues of closed-loop systems with uncertain parameters. Journal of Sound and Vibration, 276(3–5), 527–539.MathSciNetMATH
20.
go back to reference Gao, W. (2007). Natural frequency and mode shape analysis of structures with uncertainty. Mechanical Systems and Signal Processing, 21(1), 24–39.CrossRef Gao, W. (2007). Natural frequency and mode shape analysis of structures with uncertainty. Mechanical Systems and Signal Processing, 21(1), 24–39.CrossRef
21.
go back to reference Yong, X., & Hong, H. (2003). Statistical damage identification of structures with frequency changes. Journal of Sound and Vibration, 263(4), 853–870.CrossRef Yong, X., & Hong, H. (2003). Statistical damage identification of structures with frequency changes. Journal of Sound and Vibration, 263(4), 853–870.CrossRef
22.
go back to reference Bakhary, N., Hao, H., & Deeks, A. J. (2007). Damage detection using artificial neural network with consideration of uncertainties. Engineering Structures, 29(11), 2806–2815.CrossRef Bakhary, N., Hao, H., & Deeks, A. J. (2007). Damage detection using artificial neural network with consideration of uncertainties. Engineering Structures, 29(11), 2806–2815.CrossRef
23.
go back to reference Zadeh, L. (1996). Fuzzy logic = computing with words. IEEE Transactions on Fuzzy Systems, 4(2), 103–111.CrossRef Zadeh, L. (1996). Fuzzy logic = computing with words. IEEE Transactions on Fuzzy Systems, 4(2), 103–111.CrossRef
24.
go back to reference Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are uniform approximators. Neural Networks, 2(3), 359–366.MATHCrossRef Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are uniform approximators. Neural Networks, 2(3), 359–366.MATHCrossRef
25.
go back to reference Hong, X. L., & Chen, P. C. L. (2000). The equivalence between fuzzy logic systems and feedforward neural networks. IEEE Transactions on Neural Networks, 11(2), 356–365.CrossRef Hong, X. L., & Chen, P. C. L. (2000). The equivalence between fuzzy logic systems and feedforward neural networks. IEEE Transactions on Neural Networks, 11(2), 356–365.CrossRef
26.
go back to reference Silva, S. D., Dias, M., Lopes, V., & Brennan, M. J. (2008). Structural damage detection by fuzzy clustering. Mechanical Systems and Signal Processing, 22(7), 1636–1649.CrossRef Silva, S. D., Dias, M., Lopes, V., & Brennan, M. J. (2008). Structural damage detection by fuzzy clustering. Mechanical Systems and Signal Processing, 22(7), 1636–1649.CrossRef
27.
go back to reference Rodriguez, P. V. J., Negrea, M., & Arkkio, A. (2007). A Simplified scheme for induction motor condition monitoring. Mechanical Systems and Signal Processing, 22(5), 1216–1236. Rodriguez, P. V. J., Negrea, M., & Arkkio, A. (2007). A Simplified scheme for induction motor condition monitoring. Mechanical Systems and Signal Processing, 22(5), 1216–1236.
28.
go back to reference Kong, F., & Chen, R. (2004). A combined method for triplex pump fault diagnosis based on wavelet transform. Fuzzy Logic and Neuro-networks, Mechanical Systems and Signal Processing, 18(1), 161–168. Kong, F., & Chen, R. (2004). A combined method for triplex pump fault diagnosis based on wavelet transform. Fuzzy Logic and Neuro-networks, Mechanical Systems and Signal Processing, 18(1), 161–168.
29.
go back to reference Gowd, P. B., Jayashree, K., & Hegde, M. N. (2018). Comparison of artificial neural networks and fuzzy logic approaches for crack detection in a beam like structure. International Journal of Artificial Intelligence and Applications, 9, 35–51. Gowd, P. B., Jayashree, K., & Hegde, M. N. (2018). Comparison of artificial neural networks and fuzzy logic approaches for crack detection in a beam like structure. International Journal of Artificial Intelligence and Applications, 9, 35–51.
30.
go back to reference Behera, S. K., Parhi, D. R., & Das, H. C. (2018). Numerical. Experimental and Fuzzy Logic Applications for Investigation of Crack Location and Crack Depth Estimation in a Free-Free Aluminum Beam, Vibrations in Physical Systems, 29, 1–20. Behera, S. K., Parhi, D. R., & Das, H. C. (2018). Numerical. Experimental and Fuzzy Logic Applications for Investigation of Crack Location and Crack Depth Estimation in a Free-Free Aluminum Beam, Vibrations in Physical Systems, 29, 1–20.
Metadata
Title
Introduction
Author
Ranjan Ganguli
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4988-5_1

Premium Partners