Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

1. Introduction

Authors : Jose Martin Herrera Ramirez, Raul Perez Bustamante, Cesar Augusto Isaza Merino, Ana Maria Arizmendi Morquecho

Published in: Unconventional Techniques for the Production of Light Alloys and Composites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The constant innovation of the modern aeronautical and aerospace industries demands the use of better and lighter materials, which represents the most efficient way to reduce the weight of structural components and devices. To achieve this, increasing the resistance-weight ratio implies the use of improved techniques and processing methods for the component manufacturing, which are mainly mass-produced from light alloys and composites, directly impacting the best aircraft performance. This chapter is dedicated to provide a brief description of various types of lightweight materials and composites currently in use, which have been shown to be able of conferring improved properties when they are produced by unconventional processing techniques. For composites materials, the chapter describes some of the most used reinforcement constituents for industrial applications. A brief explanation of various processes for manufacturing lightweight materials and composites, as well as some conventional and sophisticated characterization techniques to evaluate them is afforded.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Peel, C., & Gregson, P. (1995). Design requirements for aerospace structural materials. In H. M. Flower (Ed.), High performance materials in aerospace. Dordrecht: Springer. Peel, C., & Gregson, P. (1995). Design requirements for aerospace structural materials. In H. M. Flower (Ed.), High performance materials in aerospace. Dordrecht: Springer.
2.
go back to reference Ekvall, J., Rhodes, J., & Wald, G. (1982). Methodology for evaluating weight savings from basic material properties. In Design of fatigue and fracture resistant structures. Philadelphia: ASTM International. Ekvall, J., Rhodes, J., & Wald, G. (1982). Methodology for evaluating weight savings from basic material properties. In Design of fatigue and fracture resistant structures. Philadelphia: ASTM International.
3.
go back to reference Polmear, I., et al. (2017). Light alloys: Metallurgy of the light metals. Butterworth-Heinemann. Polmear, I., et al. (2017). Light alloys: Metallurgy of the light metals. Butterworth-Heinemann.
4.
go back to reference Dumitraschkewitz, P., et al. (2018). Clustering in age-hardenable aluminum alloys. Advanced Engineering Materials, 20(10), 1800255.CrossRef Dumitraschkewitz, P., et al. (2018). Clustering in age-hardenable aluminum alloys. Advanced Engineering Materials, 20(10), 1800255.CrossRef
5.
go back to reference Prasad, N. E., Gokhale, A. A., & Wanhill, R. (2017). Aluminium–lithium alloys. In Aerospace materials and material technologies. Springer. Prasad, N. E., Gokhale, A. A., & Wanhill, R. (2017). Aluminium–lithium alloys. In Aerospace materials and material technologies. Springer.
6.
go back to reference Williams, J. C., & Starke, E. A., Jr. (2003). Progress in structural materials for aerospace systems. Acta Materialia, 51(19), 5775–5799.CrossRef Williams, J. C., & Starke, E. A., Jr. (2003). Progress in structural materials for aerospace systems. Acta Materialia, 51(19), 5775–5799.CrossRef
7.
go back to reference Faruk, O., Tjong, J., & Sain, M. (2017). Lightweight and sustainable materials for automotive applications. CRC Press. Faruk, O., Tjong, J., & Sain, M. (2017). Lightweight and sustainable materials for automotive applications. CRC Press.
8.
go back to reference Chawla, K. K. (2003). Ceramic matrix materials. In Ceramic matrix composites. Boston: Springer.CrossRef Chawla, K. K. (2003). Ceramic matrix materials. In Ceramic matrix composites. Boston: Springer.CrossRef
9.
go back to reference Benjamin, J. S. (1970). Dispersion strengthened superalloys by mechanical alloying. Metallurgical Transactions, 1(10), 2943–2951. Benjamin, J. S. (1970). Dispersion strengthened superalloys by mechanical alloying. Metallurgical Transactions, 1(10), 2943–2951.
10.
go back to reference Clinktan, R., et al. (2019). Effect of boron carbide nano particles in CuSi4Zn14 silicone bronze nanocomposites on matrix powder surface morphology and structural evolution via mechanical alloying. Ceramics International, 45(3), 3492–3501.CrossRef Clinktan, R., et al. (2019). Effect of boron carbide nano particles in CuSi4Zn14 silicone bronze nanocomposites on matrix powder surface morphology and structural evolution via mechanical alloying. Ceramics International, 45(3), 3492–3501.CrossRef
11.
go back to reference Chen, C.-L., & Lin, C.-H. (2019). In-situ dispersed La oxides of Al6061 composites by mechanical alloying. Journal of Alloys and Compounds, 775, 1156–1163.CrossRef Chen, C.-L., & Lin, C.-H. (2019). In-situ dispersed La oxides of Al6061 composites by mechanical alloying. Journal of Alloys and Compounds, 775, 1156–1163.CrossRef
12.
go back to reference Suryanarayana, C. (2011). Synthesis of nanocomposites by mechanical alloying. Journal of Alloys and Compounds, 509, S229–S234.CrossRef Suryanarayana, C. (2011). Synthesis of nanocomposites by mechanical alloying. Journal of Alloys and Compounds, 509, S229–S234.CrossRef
13.
go back to reference Suryanarayana, C., Ivanov, E., & Boldyrev, V. (2001). The science and technology of mechanical alloying. Materials Science and Engineering: A, 304, 151–158.CrossRef Suryanarayana, C., Ivanov, E., & Boldyrev, V. (2001). The science and technology of mechanical alloying. Materials Science and Engineering: A, 304, 151–158.CrossRef
14.
go back to reference Sundaresan, R., & Froes, F. (1987). Mechanical alloying. JOM, 39(8), 22–27.CrossRef Sundaresan, R., & Froes, F. (1987). Mechanical alloying. JOM, 39(8), 22–27.CrossRef
15.
go back to reference Froes, F. (1990). The structural applications of mechanical alloying. JOM Journal of the Minerals, Metals and Materials Society, 42(12), 24–25.CrossRef Froes, F. (1990). The structural applications of mechanical alloying. JOM Journal of the Minerals, Metals and Materials Society, 42(12), 24–25.CrossRef
16.
go back to reference Mehrizi, M. Z., & Beygi, R. (2018). Direct synthesis of Ti3AlC2-Al2O3 nanocomposite by mechanical alloying. Journal of Alloys and Compounds, 740, 118–123.CrossRef Mehrizi, M. Z., & Beygi, R. (2018). Direct synthesis of Ti3AlC2-Al2O3 nanocomposite by mechanical alloying. Journal of Alloys and Compounds, 740, 118–123.CrossRef
17.
go back to reference Luo, X.-T., Yang, G.-J., & Li, C.-J. (2012). Preparation of cBNp/NiCrAl nanostructured composite powders by a step-fashion mechanical alloying process. Powder Technology, 217, 591–598.CrossRef Luo, X.-T., Yang, G.-J., & Li, C.-J. (2012). Preparation of cBNp/NiCrAl nanostructured composite powders by a step-fashion mechanical alloying process. Powder Technology, 217, 591–598.CrossRef
18.
go back to reference Wang, J., et al. (2013). In situ synthesis of Ti2AlC–Al2O3/TiAl composite by vacuum sintering mechanically alloyed TiAl powder coated with CNTs. Journal of Alloys and Compounds, 578, 481–487.CrossRef Wang, J., et al. (2013). In situ synthesis of Ti2AlC–Al2O3/TiAl composite by vacuum sintering mechanically alloyed TiAl powder coated with CNTs. Journal of Alloys and Compounds, 578, 481–487.CrossRef
19.
go back to reference Karak, S., et al. (2018). Development of nano-Y2O3 dispersed Zr alloys synthesized by mechanical alloying and consolidated by pulse plasma sintering. Materials Characterization, 136, 337–345.CrossRef Karak, S., et al. (2018). Development of nano-Y2O3 dispersed Zr alloys synthesized by mechanical alloying and consolidated by pulse plasma sintering. Materials Characterization, 136, 337–345.CrossRef
20.
go back to reference Pérez-Bustamante, R., et al. (2017). The effect of heat treatment on microstructure evolution in artificially aged carbon nanotube/Al2024 composites synthesized by mechanical alloying. Materials Characterization, 126, 28–34.CrossRef Pérez-Bustamante, R., et al. (2017). The effect of heat treatment on microstructure evolution in artificially aged carbon nanotube/Al2024 composites synthesized by mechanical alloying. Materials Characterization, 126, 28–34.CrossRef
21.
go back to reference Prosviryakov, A., Samoshina, M., & Popov, V. (2012). Structure and properties of composite materials based on copper strengthened with diamond nanoparticles by mechanical alloying. Metal Science and Heat Treatment, 54(5–6), 298–302.CrossRef Prosviryakov, A., Samoshina, M., & Popov, V. (2012). Structure and properties of composite materials based on copper strengthened with diamond nanoparticles by mechanical alloying. Metal Science and Heat Treatment, 54(5–6), 298–302.CrossRef
22.
go back to reference Prosviryakov, A. (2015). Mechanical alloying of aluminum alloy with nanodiamond particles. Russian Journal of Non-Ferrous Metals, 56(1), 92–96.CrossRef Prosviryakov, A. (2015). Mechanical alloying of aluminum alloy with nanodiamond particles. Russian Journal of Non-Ferrous Metals, 56(1), 92–96.CrossRef
23.
go back to reference Salas, W., Alba-Baena, N., & Murr, L. (2007). Explosive shock-wave consolidation of aluminum powder/carbon nanotube aggregate mixtures: Optical and electron metallography. Metallurgical and Materials Transactions A, 38(12), 2928–2935.CrossRef Salas, W., Alba-Baena, N., & Murr, L. (2007). Explosive shock-wave consolidation of aluminum powder/carbon nanotube aggregate mixtures: Optical and electron metallography. Metallurgical and Materials Transactions A, 38(12), 2928–2935.CrossRef
24.
go back to reference Li, Y.-H., et al. (2007). Cu/single-walled carbon nanotube laminate composites fabricated by cold rolling and annealing. Nanotechnology, 18(20), 205607.CrossRef Li, Y.-H., et al. (2007). Cu/single-walled carbon nanotube laminate composites fabricated by cold rolling and annealing. Nanotechnology, 18(20), 205607.CrossRef
25.
go back to reference Yang, L., et al. (2016). Deformation mechanisms of ultra-thin Al layers in Al/SiC nanolaminates as a function of thickness and temperature. Philosophical Magazine, 96(32–34), 3336–3355.CrossRef Yang, L., et al. (2016). Deformation mechanisms of ultra-thin Al layers in Al/SiC nanolaminates as a function of thickness and temperature. Philosophical Magazine, 96(32–34), 3336–3355.CrossRef
26.
go back to reference Isaza Merino, C. A. (2017). Study of the interface-interphase of a Mg-CNT composite made by an alternative sandwich technique. Medellin: Universidad Nacional de Colombia–Sede Medellin. Isaza Merino, C. A. (2017). Study of the interface-interphase of a Mg-CNT composite made by an alternative sandwich technique. Medellin: Universidad Nacional de Colombia–Sede Medellin.
27.
go back to reference Azushima, A., et al. (2008). Severe plastic deformation (SPD) processes for metals. CIRP Annals, 57(2), 716–735.CrossRef Azushima, A., et al. (2008). Severe plastic deformation (SPD) processes for metals. CIRP Annals, 57(2), 716–735.CrossRef
28.
go back to reference Valiev, R. Z., Zhilyaev, A. P., & Langdon, T. G. (2013). Bulk nanostructured materials: Fundamentals and applications. Wiley. Valiev, R. Z., Zhilyaev, A. P., & Langdon, T. G. (2013). Bulk nanostructured materials: Fundamentals and applications. Wiley.
29.
go back to reference Milewski, J. O. (2017). Additive manufacturing metal, the art of the possible. In Additive manufacturing of metals. Springer: Cham.CrossRef Milewski, J. O. (2017). Additive manufacturing metal, the art of the possible. In Additive manufacturing of metals. Springer: Cham.CrossRef
30.
go back to reference Gonzalez, J., et al. (2019). Characterization of Inconel 625 fabricated using powder-bed-based additive manufacturing technologies. Journal of Materials Processing Technology, 264, 200–210.CrossRef Gonzalez, J., et al. (2019). Characterization of Inconel 625 fabricated using powder-bed-based additive manufacturing technologies. Journal of Materials Processing Technology, 264, 200–210.CrossRef
31.
go back to reference Kumar, L., & Nair, C. K. (2017). Current trends of additive manufacturing in the aerospace industry. In D. Wimpenny, P. Pandey, & L. J. Kumar (Eds.), Advances in 3D printing & additive manufacturing technologies. Singapore: Springer. Kumar, L., & Nair, C. K. (2017). Current trends of additive manufacturing in the aerospace industry. In D. Wimpenny, P. Pandey, & L. J. Kumar (Eds.), Advances in 3D printing & additive manufacturing technologies. Singapore: Springer.
32.
go back to reference Petrovic, V., Vicente Haro Gonzalez, J., Jorda Ferrando, O., Delgado Gordillo, J., Ramon Blasco Puchades, J., & Portoles Grinan, L. (2011). Additive layered manufacturing: Sectors of industrial application shown through case studies. International Journal of Production Research, 49(4), 1061–1079.CrossRef Petrovic, V., Vicente Haro Gonzalez, J., Jorda Ferrando, O., Delgado Gordillo, J., Ramon Blasco Puchades, J., & Portoles Grinan, L. (2011). Additive layered manufacturing: Sectors of industrial application shown through case studies. International Journal of Production Research, 49(4), 1061–1079.CrossRef
33.
go back to reference Pérez-Sánchez, A., et al. (2018). Fatigue behaviour and equivalent diameter of single Ti-6Al-4V struts fabricated by Electron Beam Melting orientated to porous lattice structures. Materials & Design, 155, 106–115.CrossRef Pérez-Sánchez, A., et al. (2018). Fatigue behaviour and equivalent diameter of single Ti-6Al-4V struts fabricated by Electron Beam Melting orientated to porous lattice structures. Materials & Design, 155, 106–115.CrossRef
34.
go back to reference Um, J., et al. (2017). STEP-NC compliant process planning of additive manufacturing: Remanufacturing. The International Journal of Advanced Manufacturing Technology, 88(5–8), 1215–1230.CrossRef Um, J., et al. (2017). STEP-NC compliant process planning of additive manufacturing: Remanufacturing. The International Journal of Advanced Manufacturing Technology, 88(5–8), 1215–1230.CrossRef
35.
go back to reference Berndt, C. C., & Lenling, W. J. (2004). Handbook of thermal spray technology, ed. J.R. Davis. USA: ASM international. Berndt, C. C., & Lenling, W. J. (2004). Handbook of thermal spray technology, ed. J.R. Davis. USA: ASM international.
36.
go back to reference Vuoristo, P. (2014) Thermal spray coating processes, in Comprehensive materials processing, ed. D. Cameron. Elsevier. Vuoristo, P. (2014) Thermal spray coating processes, in Comprehensive materials processing, ed. D. Cameron. Elsevier.
37.
go back to reference Bakshi, S. R., et al. (2009). Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surface and Coatings Technology, 203(10–11), 1544–1554.CrossRef Bakshi, S. R., et al. (2009). Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surface and Coatings Technology, 203(10–11), 1544–1554.CrossRef
38.
go back to reference Yin, S., et al. (2018). Cold-sprayed metal coatings with nanostructure. Advances in Materials Science and Engineering, 2018, 1–19.CrossRef Yin, S., et al. (2018). Cold-sprayed metal coatings with nanostructure. Advances in Materials Science and Engineering, 2018, 1–19.CrossRef
39.
go back to reference Schwartz, M. M. (1997). Composite materials: processing, fabrication, and applications (Vol. 2). Prentice Hall. Schwartz, M. M. (1997). Composite materials: processing, fabrication, and applications (Vol. 2). Prentice Hall.
40.
go back to reference Desai, A., & Haque, M. (2005). Mechanics of the interface for carbon nanotube–polymer composites. Thin-Walled Structures, 43(11), 1787–1803.CrossRef Desai, A., & Haque, M. (2005). Mechanics of the interface for carbon nanotube–polymer composites. Thin-Walled Structures, 43(11), 1787–1803.CrossRef
41.
go back to reference Peter, I., & Rosso, M. (2015). Light alloys-From traditional to innovative technologies. In Z. Ahmad (Ed.), New trends in alloy development, characterization and application. IntechOpen. Peter, I., & Rosso, M. (2015). Light alloys-From traditional to innovative technologies. In Z. Ahmad (Ed.), New trends in alloy development, characterization and application. IntechOpen.
Metadata
Title
Introduction
Authors
Jose Martin Herrera Ramirez
Raul Perez Bustamante
Cesar Augusto Isaza Merino
Ana Maria Arizmendi Morquecho
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-48122-3_1

Premium Partners