Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

1. Introduction

Authors : Matthew F. Dixon, Igor Halperin, Paul Bilokon

Published in: Machine Learning in Finance

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter introduces the industry context for machine learning in finance, discussing the critical events that have shaped the finance industry’s need for machine learning and the unique barriers to adoption. The finance industry has adopted machine learning to varying degrees of sophistication. How it has been adopted is heavily fragmented by the academic disciplines underpinning the applications. We view some key mathematical examples that demonstrate the nature of machine learning and how it is used in practice, with the focus on building intuition for more technical expositions in later chapters. In particular, we begin to address many finance practitioner’s concerns that neural networks are a “black-box” by showing how they are related to existing well-established techniques such as linear regression, logistic regression, and autoregressive time series models. Such arguments are developed further in later chapters. This chapter also introduces reinforcement learning for finance and is followed by more in-depth case studies highlighting the design concepts and practical challenges of applying machine learning in practice.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
The model is referred to as non-parametric if the parameter space is infinite dimensional and parametric if the parameter space is finite dimensional.
 
3
C. Shannon, A Mathematical Theory of Communication, The Bell System Technical Journal, Vol. 27, pp. 379-423, 623-656, July, October, 1948.
 
4
Note that we do not treat the input as a layer. So there are L − 1 hidden layers and an output layer.
 
5
While the functional form of the map is the same as linear regression, neural networks do not assume a data generation process and hence inference is not identical to ordinary least squares regression.
 
6
A wealth process is self-financing if, at each time step, any purchase of an additional quantity of the risky asset is funded from the bank account. Vice versa, any proceeds from a sale of some quantity of the asset go to the bank account.
 
7
Note, for avoidance of doubt, that the risk-aversion parameter must be scaled by a factor of \(\frac {1}{2}\) to ensure consistency with the finance literature.
 
8
The question of how much data is needed to train a neural network is a central one, with the immediate concern being insufficient data to avoid over-fitting. The amount of data needed is complex to assess; however, it is partly dependent on the number of edges in the network and can be assessed through bias–variance analysis, as described in Chap. D.
 
9
Note that the composition of the S&P 500 changes over time and so we should interpret a feature as a fixed symbol.
 
10
The strategy refers the choice of weight if Player 2 is to choose a payoff V = wV 1 + (1 − w)V 2, i.e. a weighted combination of payoffs V 1 and V 2.
 
Literature
go back to reference Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle (pp. 267–281). Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle (pp. 267–281).
go back to reference Akcora, C. G., Dixon, M. F., Gel, Y. R., & Kantarcioglu, M. (2018). Bitcoin risk modeling with blockchain graphs. Economics Letters,173(C), 138–142.MATH Akcora, C. G., Dixon, M. F., Gel, Y. R., & Kantarcioglu, M. (2018). Bitcoin risk modeling with blockchain graphs. Economics Letters,173(C), 138–142.MATH
go back to reference Arnold, V. I. (1957). On functions of three variables (Vol. 114, pp. 679–681). Arnold, V. I. (1957). On functions of three variables (Vol. 114, pp. 679–681).
go back to reference Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics,31, 307–327.MathSciNetMATH Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics,31, 307–327.MathSciNetMATH
go back to reference Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis, forecasting, and control. San Francisco: Holden-Day.MATH Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis, forecasting, and control. San Francisco: Holden-Day.MATH
go back to reference Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time series analysis, forecasting, and control (third ed.). Englewood Cliffs, NJ: Prentice-Hall.MATH Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time series analysis, forecasting, and control (third ed.). Englewood Cliffs, NJ: Prentice-Hall.MATH
go back to reference Breiman, L. (2001). Statistical modeling: the two cultures (with comments and a rejoinder by the author). Statistical Science,16(3), 199–231.MathSciNetMATH Breiman, L. (2001). Statistical modeling: the two cultures (with comments and a rejoinder by the author). Statistical Science,16(3), 199–231.MathSciNetMATH
go back to reference Cont, R., & de Larrard, A. (2013). Price dynamics in a Markovian limit order market. SIAM Journal on Financial Mathematics,4(1), 1–25.MathSciNetMATH Cont, R., & de Larrard, A. (2013). Price dynamics in a Markovian limit order market. SIAM Journal on Financial Mathematics,4(1), 1–25.MathSciNetMATH
go back to reference de Prado, M. (2018). Advances in financial machine learning. Wiley. de Prado, M. (2018). Advances in financial machine learning. Wiley.
go back to reference Dhar, V. (2013, December). Data science and prediction. Commun. ACM,56(12), 64–73. Dhar, V. (2013, December). Data science and prediction. Commun. ACM,56(12), 64–73.
go back to reference Dixon, M. (2018a). A high frequency trade execution model for supervised learning. High Frequency,1(1), 32–52. Dixon, M. (2018a). A high frequency trade execution model for supervised learning. High Frequency,1(1), 32–52.
go back to reference Dixon, M. (2018b). Sequence classification of the limit order book using recurrent neural networks. Journal of Computational Science,24, 277–286.MathSciNet Dixon, M. (2018b). Sequence classification of the limit order book using recurrent neural networks. Journal of Computational Science,24, 277–286.MathSciNet
go back to reference Dixon, M., & Halperin, I. (2019). The four horsemen of machine learning in finance. Dixon, M., & Halperin, I. (2019). The four horsemen of machine learning in finance.
go back to reference Dixon, M., Polson, N., & Sokolov, V. (2018). Deep learning for spatio-temporal modeling: Dynamic traffic flows and high frequency trading. ASMB. Dixon, M., Polson, N., & Sokolov, V. (2018). Deep learning for spatio-temporal modeling: Dynamic traffic flows and high frequency trading. ASMB.
go back to reference Dixon, M. F., & Polson, N. G. (2019, Mar). Deep fundamental factor models. arXiv e-prints, arXiv:1903.07677. Dixon, M. F., & Polson, N. G. (2019, Mar). Deep fundamental factor models. arXiv e-prints, arXiv:1903.07677.
go back to reference Dyhrberg, A. (2016). Bitcoin, gold and the dollar – a GARCH volatility analysis. Finance Research Letters. Dyhrberg, A. (2016). Bitcoin, gold and the dollar – a GARCH volatility analysis. Finance Research Letters.
go back to reference Elman, J. L. (1991, Sep). Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning,7(2), 195–225. Elman, J. L. (1991, Sep). Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning,7(2), 195–225.
go back to reference Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature,542(7639), 115–118. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature,542(7639), 115–118.
go back to reference Flood, M., Jagadish, H. V., & Raschid, L. (2016). Big data challenges and opportunities in financial stability monitoring. Financial Stability Review, (20), 129–142. Flood, M., Jagadish, H. V., & Raschid, L. (2016). Big data challenges and opportunities in financial stability monitoring. Financial Stability Review, (20), 129–142.
go back to reference Gomber, P., Koch, J.-A., & Siering, M. (2017). Digital finance and fintech: current research and future research directions. Journal of Business Economics,7(5), 537–580. Gomber, P., Koch, J.-A., & Siering, M. (2017). Digital finance and fintech: current research and future research directions. Journal of Business Economics,7(5), 537–580.
go back to reference Graves, A. (2012). Supervised sequence labelling with recurrent neural networks. Studies in Computational intelligence. Heidelberg, New York: Springer. Graves, A. (2012). Supervised sequence labelling with recurrent neural networks. Studies in Computational intelligence. Heidelberg, New York: Springer.
go back to reference Gu, S., Kelly, B. T., & Xiu, D. (2018). Empirical asset pricing via machine learning. Chicago Booth Research Paper 18–04. Gu, S., Kelly, B. T., & Xiu, D. (2018). Empirical asset pricing via machine learning. Chicago Booth Research Paper 18–04.
go back to reference Harvey, C. R., Liu, Y., & Zhu, H. (2016). …and the cross-section of expected returns. The Review of Financial Studies,29(1), 5–68. Harvey, C. R., Liu, Y., & Zhu, H. (2016). …and the cross-section of expected returns. The Review of Financial Studies,29(1), 5–68.
go back to reference Hornik, K., Stinchcombe, M., & White, H. (1989, July). Multilayer feedforward networks are universal approximators. Neural Netw.,2(5), 359–366.MATH Hornik, K., Stinchcombe, M., & White, H. (1989, July). Multilayer feedforward networks are universal approximators. Neural Netw.,2(5), 359–366.MATH
go back to reference Kearns, M., & Nevmyvaka, Y. (2013). Machine learning for market microstructure and high frequency trading. High Frequency Trading - New Realities for Traders. Kearns, M., & Nevmyvaka, Y. (2013). Machine learning for market microstructure and high frequency trading. High Frequency Trading - New Realities for Traders.
go back to reference Kercheval, A., & Zhang, Y. (2015). Modeling high-frequency limit order book dynamics with support vector machines. Journal of Quantitative Finance,15(8), 1315–1329.MATH Kercheval, A., & Zhang, Y. (2015). Modeling high-frequency limit order book dynamics with support vector machines. Journal of Quantitative Finance,15(8), 1315–1329.MATH
go back to reference Kolmogorov, A. N. (1957). On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. Dokl. Akad. Nauk SSSR,114, 953–956.MathSciNetMATH Kolmogorov, A. N. (1957). On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. Dokl. Akad. Nauk SSSR,114, 953–956.MathSciNetMATH
go back to reference Kubota, T. (2017, January). Artificial intelligence used to identify skin cancer. Kubota, T. (2017, January). Artificial intelligence used to identify skin cancer.
go back to reference Kullback, S., & Leibler, R. A. (1951, 03). On information and sufficiency. Ann. Math. Statist.,22(1), 79–86.MATH Kullback, S., & Leibler, R. A. (1951, 03). On information and sufficiency. Ann. Math. Statist.,22(1), 79–86.MATH
go back to reference Philipp, G., & Carbonell, J. G. (2017, Dec). Nonparametric neural networks. arXiv e-prints, arXiv:1712.05440. Philipp, G., & Carbonell, J. G. (2017, Dec). Nonparametric neural networks. arXiv e-prints, arXiv:1712.05440.
go back to reference Philippon, T. (2016). The fintech opportunity. CEPR Discussion Papers 11409, C.E.P.R. Discussion Papers. Philippon, T. (2016). The fintech opportunity. CEPR Discussion Papers 11409, C.E.P.R. Discussion Papers.
go back to reference Pinar Saygin, A., Cicekli, I., & Akman, V. (2000, November). Turing test: 50 years later. Minds Mach.,10(4), 463–518. Pinar Saygin, A., Cicekli, I., & Akman, V. (2000, November). Turing test: 50 years later. Minds Mach.,10(4), 463–518.
go back to reference Poggio, T. (2016). Deep learning: mathematics and neuroscience. A Sponsored Supplement to ScienceBrain-Inspired intelligent robotics: The intersection of robotics and neuroscience, 9–12. Poggio, T. (2016). Deep learning: mathematics and neuroscience. A Sponsored Supplement to ScienceBrain-Inspired intelligent robotics: The intersection of robotics and neuroscience, 9–12.
go back to reference Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal,27. Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal,27.
go back to reference Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition.
go back to reference Sirignano, J., Sadhwani, A., & Giesecke, K. (2016, July). Deep learning for mortgage risk. ArXiv e-prints. Sirignano, J., Sadhwani, A., & Giesecke, K. (2016, July). Deep learning for mortgage risk. ArXiv e-prints.
go back to reference Sirignano, J. A. (2016). Deep learning for limit order books. arXiv preprint arXiv:1601.01987. Sirignano, J. A. (2016). Deep learning for limit order books. arXiv preprint arXiv:1601.01987.
go back to reference Sovbetov, Y. (2018). Factors influencing cryptocurrency prices: Evidence from Bitcoin, Ethereum, Dash, Litcoin, and Monero. Journal of Economics and Financial Analysis,2(2), 1–27. Sovbetov, Y. (2018). Factors influencing cryptocurrency prices: Evidence from Bitcoin, Ethereum, Dash, Litcoin, and Monero. Journal of Economics and Financial Analysis,2(2), 1–27.
go back to reference Stein, H. (2012). Counterparty risk, CVA, and Basel III. Stein, H. (2012). Counterparty risk, CVA, and Basel III.
go back to reference Turing, A. M. (1995). Computers & thought. Chapter Computing Machinery and Intelligence (pp. 11–35). Cambridge, MA, USA: MIT Press. Turing, A. M. (1995). Computers & thought. Chapter Computing Machinery and Intelligence (pp. 11–35). Cambridge, MA, USA: MIT Press.
go back to reference Wiener, N. (1964). Extrapolation, interpolation, and smoothing of stationary time series. The MIT Press. Wiener, N. (1964). Extrapolation, interpolation, and smoothing of stationary time series. The MIT Press.
Metadata
Title
Introduction
Authors
Matthew F. Dixon
Igor Halperin
Paul Bilokon
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-41068-1_1