Skip to main content
Top
Published in:
Cover of the book

2012 | OriginalPaper | Chapter

1. Introduction

Authors : Roel van de Krol, Michael Grätzel

Published in: Photoelectrochemical Hydrogen Production

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Direct conversion of sunlight into chemical fuels is an attractive prospect for a future energy infrastructure based on sustainable sources. This chapter motivates the choice for photoelectrochemical water splitting as a promising route toward solar fuels. It starts by describing some of the challenges associated with the use of fossil fuels, and gives a brief overview of alternative energy sources. It illustrates the advantages of using chemical fuels as a large-scale storage solution, and describes the role of hydrogen as one of the key components of these fuels. Finally, some benchmarks for photoelectrochemical water splitting are given, and various approaches and materials demands for practical devices are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
CO2 level in May 2011.
 
2
Estimates vary between 30 and 80%.
 
3
The explosion limits of hydrogen are between 18 and 59%, and the flammability limits are between 4 and 74% (in air).
 
4
This depends on the catalytic activity of the semiconductor surface, which can be quite low. By attaching suitable co-catalysts, overpotentials as low as 0.3–0.4 V can be achieved.
 
Literature
1.
go back to reference Allison, I., Bindoff, N.L., Bindschadler, R.A., Cox, P.M., de Noblet, N., England, M.H., Francis, J.E., Gruber, N., Haywood, A.M., Karoly, D.J., Kaser, G., Le QuÕrÕ, C., Lenton, T.M., Mann, M.E., McNeil, B.I., Pitman, A.J., Rahmstorf, S., Rignot, E., Schellnhuber, H.J., Schneider, S.H., Sherwood, S.C., Somerville, R.C.J., Steffen, K., Steig, E.J., Visbeck, M., Weaver, A.J.: The Copenhagen Diagnosis: Updating the World on the Latest Climate Science. The University of New South Wales Climate Change Research Centre (CCRC), Sydney, Australia (2009) Allison, I., Bindoff, N.L., Bindschadler, R.A., Cox, P.M., de Noblet, N., England, M.H., Francis, J.E., Gruber, N., Haywood, A.M., Karoly, D.J., Kaser, G., Le QuÕrÕ, C., Lenton, T.M., Mann, M.E., McNeil, B.I., Pitman, A.J., Rahmstorf, S., Rignot, E., Schellnhuber, H.J., Schneider, S.H., Sherwood, S.C., Somerville, R.C.J., Steffen, K., Steig, E.J., Visbeck, M., Weaver, A.J.: The Copenhagen Diagnosis: Updating the World on the Latest Climate Science. The University of New South Wales Climate Change Research Centre (CCRC), Sydney, Australia (2009)
2.
go back to reference Oppenheim, J., Beinhocker, E.D.: Climate change and the economy - myths versus realities. Davos, Switzerland. McKinsey & Company, Inc. (2009) Oppenheim, J., Beinhocker, E.D.: Climate change and the economy - myths versus realities. Davos, Switzerland. McKinsey & Company, Inc. (2009)
3.
go back to reference Pacala, S., Socolow, R.: Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305, 968–972 (2004)CrossRef Pacala, S., Socolow, R.: Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305, 968–972 (2004)CrossRef
4.
5.
go back to reference Lewis, N.S., Nocera, D.G.: Powering the planet: chemical challenges in solar energy utilization. Proc. Nat. Acad. Sci. U S A 103, 15729–15735 (2006)CrossRef Lewis, N.S., Nocera, D.G.: Powering the planet: chemical challenges in solar energy utilization. Proc. Nat. Acad. Sci. U S A 103, 15729–15735 (2006)CrossRef
6.
go back to reference Lewis, N.S., Crabtree, G.: Basic Research Needs for Solar Energy Utilization: report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005. US Department of Energy, Office of Basic Energy Science, Washington, DC (2005) Lewis, N.S., Crabtree, G.: Basic Research Needs for Solar Energy Utilization: report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005. US Department of Energy, Office of Basic Energy Science, Washington, DC (2005)
7.
go back to reference Rajeshwar, K., McConnell, R., Licht, S.: Solar Hydrogen Generation – Toward a Renewable Energy Future. Springer, New York (2008) Rajeshwar, K., McConnell, R., Licht, S.: Solar Hydrogen Generation – Toward a Renewable Energy Future. Springer, New York (2008)
8.
go back to reference Grimes, C.A., Varghese, O.K., Ranjan, S.: Light, Water, Hydrogen – The Solar Generation of Hydrogen by Water Photoelectrolysis. Springer, New York (2008) Grimes, C.A., Varghese, O.K., Ranjan, S.: Light, Water, Hydrogen – The Solar Generation of Hydrogen by Water Photoelectrolysis. Springer, New York (2008)
9.
go back to reference Khaselev, O., Turner, J.A.: A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998)CrossRef Khaselev, O., Turner, J.A.: A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998)CrossRef
10.
go back to reference Sivula, K., Le Formal, F., Grätzel, M.: WO3–Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chem. Mater. 21, 2862–2867 (2009)CrossRef Sivula, K., Le Formal, F., Grätzel, M.: WO3–Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chem. Mater. 21, 2862–2867 (2009)CrossRef
11.
go back to reference Youngblood, W.J., Lee, S.H.A., Maeda, K., Mallouk, T.E.: Visible light water splitting using dye-sensitized oxide semiconductors. Acc. Chem. Res. 42, 1966–1973 (2009)CrossRef Youngblood, W.J., Lee, S.H.A., Maeda, K., Mallouk, T.E.: Visible light water splitting using dye-sensitized oxide semiconductors. Acc. Chem. Res. 42, 1966–1973 (2009)CrossRef
12.
go back to reference Kay, A., Cesar, I., Grätzel, M.: New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006)CrossRef Kay, A., Cesar, I., Grätzel, M.: New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006)CrossRef
13.
go back to reference Van de Krol, R., Liang, Y.Q., Schoonman, J.: Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 18, 2311–2320 (2008)CrossRef Van de Krol, R., Liang, Y.Q., Schoonman, J.: Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 18, 2311–2320 (2008)CrossRef
14.
go back to reference Enache, C.S., Lloyd, D., Damen, M.R., Schoonman, J., van de Krol, R.: Photo-electrochemical properties of thin-film InVO4 photoanodes: the role of deep donor states. J. Phys. Chem. C 113, 19351–19360 (2009)CrossRef Enache, C.S., Lloyd, D., Damen, M.R., Schoonman, J., van de Krol, R.: Photo-electrochemical properties of thin-film InVO4 photoanodes: the role of deep donor states. J. Phys. Chem. C 113, 19351–19360 (2009)CrossRef
Metadata
Title
Introduction
Authors
Roel van de Krol
Michael Grätzel
Copyright Year
2012
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4614-1380-6_1