Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

1. Introduction

Author : Prof. Dr. Teik-Cheng Lim

Published in: Mechanics of Metamaterials with Negative Parameters

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter gives a brief introduction to metamaterials starting from its definition to the generic (including electromagnetic) metamaterials, through mechanical metamaterial, and finally to the mechanics of metamaterials with special emphasis on negative properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Andreone A, Cusano A, Cutolo A, Galdi V (eds) (2011) Selected topics in photonic crystals and metamaterials. World Scientific, Singapore Andreone A, Cusano A, Cutolo A, Galdi V (eds) (2011) Selected topics in photonic crystals and metamaterials. World Scientific, Singapore
go back to reference Baughman RH, Stafström S, Cui C, Dantas SO (1998) Materials with negative compressibilities in one of more dimensions. Science 279(5356):1522–1524 Baughman RH, Stafström S, Cui C, Dantas SO (1998) Materials with negative compressibilities in one of more dimensions. Science 279(5356):1522–1524
go back to reference Bertoldi K, Vitelli V, Christensen J, van Hecke M (2017) Flexible mechanical metamaterials. Nat Rev Mater 2(11):17066 Bertoldi K, Vitelli V, Christensen J, van Hecke M (2017) Flexible mechanical metamaterials. Nat Rev Mater 2(11):17066
go back to reference Boley BA, Weiner JH (1997) Theory of thermal stresses. Dover Publications, New York Boley BA, Weiner JH (1997) Theory of thermal stresses. Dover Publications, New York
go back to reference Borja AL (ed) (2017) Metamaterials—Devices and applications. InTechOpen, London Borja AL (ed) (2017) Metamaterials—Devices and applications. InTechOpen, London
go back to reference Brener I, Liu S, Staude I, Valentine J, Holloway C (2019) Dielectric metamaterials: fundamentals, designs, and applications. Elsevier, Cambridge Brener I, Liu S, Staude I, Valentine J, Holloway C (2019) Dielectric metamaterials: fundamentals, designs, and applications. Elsevier, Cambridge
go back to reference Cai W, Shalaev VM (2010) Optical metamaterials: fundamentals and applications. Springer, New York Cai W, Shalaev VM (2010) Optical metamaterials: fundamentals and applications. Springer, New York
go back to reference Caloz C, Itoh T (2006) Electromagnetic metamaterials: transmission line theory and microwave applications. Wiley, Hoboken Caloz C, Itoh T (2006) Electromagnetic metamaterials: transmission line theory and microwave applications. Wiley, Hoboken
go back to reference Canet-Ferrer J (ed) (2019) Metamaterials and metasurfaces. InTechOpen, London Canet-Ferrer J (ed) (2019) Metamaterials and metasurfaces. InTechOpen, London
go back to reference Capolino F (ed) (2009) Metamaterials handbook: theory and phenomena of metamaterials. CRC Press, Boca Raton Capolino F (ed) (2009) Metamaterials handbook: theory and phenomena of metamaterials. CRC Press, Boca Raton
go back to reference Che K, Yuan C, Wu J, Qi HJ, Meaud J (2017) Three-dimensional-printed multistable mechanical metamaterials with a deterministic deformation sequence. J Appl Mech 84(1):011004 Che K, Yuan C, Wu J, Qi HJ, Meaud J (2017) Three-dimensional-printed multistable mechanical metamaterials with a deterministic deformation sequence. J Appl Mech 84(1):011004
go back to reference Chipouline A, Küppers F (2018) Optical metamaterials: qualitative models. Springer, Cham Chipouline A, Küppers F (2018) Optical metamaterials: qualitative models. Springer, Cham
go back to reference Choudhury B (ed) (2017) Metamaterial inspired electromagnetic applications: role of intelligent systems. Springer, Singapore Choudhury B (ed) (2017) Metamaterial inspired electromagnetic applications: role of intelligent systems. Springer, Singapore
go back to reference Choudhury B, Menon A, Jha RM (2016) Active terahertz metamaterial for biomedical applications. Springer, Singapore Choudhury B, Menon A, Jha RM (2016) Active terahertz metamaterial for biomedical applications. Springer, Singapore
go back to reference Christensen J, Kadic M, Kraft O, Wegener M (2015) Vibrant times for mechanical metamaterials. MRS Commun 5(3):453–462 Christensen J, Kadic M, Kraft O, Wegener M (2015) Vibrant times for mechanical metamaterials. MRS Commun 5(3):453–462
go back to reference Cui TJ, Smith D, Liu R (eds) (2010) Metamaterials: theory, design, and applications. Springer, New York Cui TJ, Smith D, Liu R (eds) (2010) Metamaterials: theory, design, and applications. Springer, New York
go back to reference Cui TJ, Tang WX, Yang XM, Mei ZL, Jiang WX (2016) Metamaterials: beyond crystals, noncrystals, and quasicrystals. CRC Press, Boca Raton Cui TJ, Tang WX, Yang XM, Mei ZL, Jiang WX (2016) Metamaterials: beyond crystals, noncrystals, and quasicrystals. CRC Press, Boca Raton
go back to reference Degabriele EP, Attard D, Grima-Cornish JN, Caruana-Gauci R, Gatt R, Evans KE, Grima JN (2019) On the compressibility properties of the wine-rack-like carbon allotropes and related poly(phenylacetylene) systems. Phys Status Solidi B 256(1):1800572 Degabriele EP, Attard D, Grima-Cornish JN, Caruana-Gauci R, Gatt R, Evans KE, Grima JN (2019) On the compressibility properties of the wine-rack-like carbon allotropes and related poly(phenylacetylene) systems. Phys Status Solidi B 256(1):1800572
go back to reference Denz C, Flach S, Kivshar YS (eds) (2010) Nonlinearities in periodic structures and metamaterials. Springer, Berlin Denz C, Flach S, Kivshar YS (eds) (2010) Nonlinearities in periodic structures and metamaterials. Springer, Berlin
go back to reference Diest K (ed) (2013) Numerical methods for metamaterial design. Springer, Dordrecht Diest K (ed) (2013) Numerical methods for metamaterial design. Springer, Dordrecht
go back to reference Dudek KK, Attard D, Caruana-Gauci R, Wojciechowski KW, Grima JN (2016) Unimode metamaterials exhibiting negative linear compressibility and negative thermal expansion. Smart Mater Struct 25(2):025009 Dudek KK, Attard D, Caruana-Gauci R, Wojciechowski KW, Grima JN (2016) Unimode metamaterials exhibiting negative linear compressibility and negative thermal expansion. Smart Mater Struct 25(2):025009
go back to reference Dudek KK, Wojciechowski KW, Dudek MR, Gatt R, Mizzi L, Grima JN (2018a) Potential of mechanical metamaterials to induce their own global rotational motion. Smart Mater Struct 27(5):055007 Dudek KK, Wojciechowski KW, Dudek MR, Gatt R, Mizzi L, Grima JN (2018a) Potential of mechanical metamaterials to induce their own global rotational motion. Smart Mater Struct 27(5):055007
go back to reference Dudek KK, Gatt R, Dudek MR, Grima JN (2018b) Negative and positive stiffness in auxetic magneto-mechanical metamaterials. Proc R Soc A 474(2215):20180003 Dudek KK, Gatt R, Dudek MR, Grima JN (2018b) Negative and positive stiffness in auxetic magneto-mechanical metamaterials. Proc R Soc A 474(2215):20180003
go back to reference Eleftheriades GV, Balmain KG (eds) (2005) Negative-refraction metamaterials: fundamental principles and applications. Wiley, Hoboken Eleftheriades GV, Balmain KG (eds) (2005) Negative-refraction metamaterials: fundamental principles and applications. Wiley, Hoboken
go back to reference Engheta N, Ziolkowski RW (eds) (2006) Metamaterials: physics and engineering explorations. Wiley, Hoboken Engheta N, Ziolkowski RW (eds) (2006) Metamaterials: physics and engineering explorations. Wiley, Hoboken
go back to reference Fine RA, Millero FJ (1973) Compressibility of water as a function of temperature and pressure. J Chem Phys 59(10):5529–5536 Fine RA, Millero FJ (1973) Compressibility of water as a function of temperature and pressure. J Chem Phys 59(10):5529–5536
go back to reference Fortes AD, Suard E, Knight KS (2011) Negative linear compressibility and massive anisotropic thermal expansion in methanol monohydrate. Science 331(6018):742–746 Fortes AD, Suard E, Knight KS (2011) Negative linear compressibility and massive anisotropic thermal expansion in methanol monohydrate. Science 331(6018):742–746
go back to reference Gao Z, Liu D, Tomanek D (2018) Two-dimensional mechanical metamaterials with unusual Poisson ratio behavior. Phys Rev Appl 10(6):064039 Gao Z, Liu D, Tomanek D (2018) Two-dimensional mechanical metamaterials with unusual Poisson ratio behavior. Phys Rev Appl 10(6):064039
go back to reference Gibson RF (2012) Principles of composite material mechanics, 3rd edn. CRC Press, Boca Raton Gibson RF (2012) Principles of composite material mechanics, 3rd edn. CRC Press, Boca Raton
go back to reference Grima JN, Farrugia PS, Gatt R, Zammit V (2007) Connected triangles exhibiting negative Poisson’s ratios and negative thermal expansion. J Phys Soc Jpn 76(2):025001 Grima JN, Farrugia PS, Gatt R, Zammit V (2007) Connected triangles exhibiting negative Poisson’s ratios and negative thermal expansion. J Phys Soc Jpn 76(2):025001
go back to reference Grima JN, Gatt R, Zammit V, Cauchi R, Attard D (2012a) On the negative Poisson’s ratio and thermal expansion in natrolite. In: Meunier M (ed) Industrial applications of molecular simulatons. CRC Press, Boca Raton, pp 135–152 Grima JN, Gatt R, Zammit V, Cauchi R, Attard D (2012a) On the negative Poisson’s ratio and thermal expansion in natrolite. In: Meunier M (ed) Industrial applications of molecular simulatons. CRC Press, Boca Raton, pp 135–152
go back to reference Grima JN, Caruana-Gauci R, Attard D, Gatt R (2012b) Three-dimensional cellular structures with negative Poisson’s ratio and negative compressibility properties. Proc Royal Soc A 468(2146):3121–3138 Grima JN, Caruana-Gauci R, Attard D, Gatt R (2012b) Three-dimensional cellular structures with negative Poisson’s ratio and negative compressibility properties. Proc Royal Soc A 468(2146):3121–3138
go back to reference Hao Y, Mittra R (2009) FDTD modeling of metamaterials: theory and applications. Artech House, Norwood Hao Y, Mittra R (2009) FDTD modeling of metamaterials: theory and applications. Artech House, Norwood
go back to reference Hess O, Gric T (2018) Phenomena of optical metamaterials. Elsevier, Amsterdam Hess O, Gric T (2018) Phenomena of optical metamaterials. Elsevier, Amsterdam
go back to reference Hetnarski RB, Eslami MR (2009) Thermal stresses—Advanced theory and applications. Springer, New York Hetnarski RB, Eslami MR (2009) Thermal stresses—Advanced theory and applications. Springer, New York
go back to reference Hewage TAM, Alderson KL, Alderson A, Scarpa F (2016) Double-negative mechanical metamaterials displaying simultaneous negative stiffness and negative Poisson’s ratio properties. Adv Mater 28(46):10323–10332 Hewage TAM, Alderson KL, Alderson A, Scarpa F (2016) Double-negative mechanical metamaterials displaying simultaneous negative stiffness and negative Poisson’s ratio properties. Adv Mater 28(46):10323–10332
go back to reference Huang Y, Zhang X, Kadic M, Liang G (2019) Stiffer, stronger and sentrosymmetrical class of pentamodal mechanical metamaterials. Materials 12(21):3470 Huang Y, Zhang X, Kadic M, Liang G (2019) Stiffer, stronger and sentrosymmetrical class of pentamodal mechanical metamaterials. Materials 12(21):3470
go back to reference Jackson JA, Messner MC, Dudukovic NA, Smith WL, Bekker L, Moran B, Golobic AM, Pascall AJ, Duoss EB, Loh KJ, Spadaccini CM (2018) Field responsive mechanical metamaterials. Sci Advances 4(12):eaau6419 Jackson JA, Messner MC, Dudukovic NA, Smith WL, Bekker L, Moran B, Golobic AM, Pascall AJ, Duoss EB, Loh KJ, Spadaccini CM (2018) Field responsive mechanical metamaterials. Sci Advances 4(12):eaau6419
go back to reference Jia Z, Wang L (2019) Instability-triggered triply negative mechanical metamaterial. Phys Rev Appl 12(2):024040 Jia Z, Wang L (2019) Instability-triggered triply negative mechanical metamaterial. Phys Rev Appl 12(2):024040
go back to reference Kaw AK (2006) Mechanics of composite materials, 2nd edn. CRC Press, Boca Raton Kaw AK (2006) Mechanics of composite materials, 2nd edn. CRC Press, Boca Raton
go back to reference Krowne CM, Zhang Y (eds) (2007) Physics of negative refraction and negative index materials: optical and electronic aspects and diversified approaches. Springer, Berlin Krowne CM, Zhang Y (eds) (2007) Physics of negative refraction and negative index materials: optical and electronic aspects and diversified approaches. Springer, Berlin
go back to reference Lee YP, Rhee JY, Yoo YJ, Kim KW (2016) Metamaterials for perfect absorption. Springer, Singapore Lee YP, Rhee JY, Yoo YJ, Kim KW (2016) Metamaterials for perfect absorption. Springer, Singapore
go back to reference Lheurette É (ed) (2013) Metamaterials and wave control. Wiley, Hoboken Lheurette É (ed) (2013) Metamaterials and wave control. Wiley, Hoboken
go back to reference Li J, Huang Y (2013) Time-domain finite element methods for Maxwell’s equations in metamaterials. Springer, Berlin Li J, Huang Y (2013) Time-domain finite element methods for Maxwell’s equations in metamaterials. Springer, Berlin
go back to reference Li D, Ma J, Dong L, Lakes RS (2016) A bi-material structure with Poisson’s ratio tunable from positive to negative via temperature control. Mater Lett 181:285–288 Li D, Ma J, Dong L, Lakes RS (2016) A bi-material structure with Poisson’s ratio tunable from positive to negative via temperature control. Mater Lett 181:285–288
go back to reference Lim TC (2017a) Auxetic and negative thermal expansion structure based on interconnected array of rings and sliding rods. Phys Status Solidi B 254(12):1600775 Lim TC (2017a) Auxetic and negative thermal expansion structure based on interconnected array of rings and sliding rods. Phys Status Solidi B 254(12):1600775
go back to reference Lim TC (2017b) 2D structures exhibiting negative area compressibility. Phys Status Solidi B 254(12):1600682 Lim TC (2017b) 2D structures exhibiting negative area compressibility. Phys Status Solidi B 254(12):1600682
go back to reference Lim TC (2018) A negative hygroscopic expansion material. Mater Sci Forum 928:277–282 Lim TC (2018) A negative hygroscopic expansion material. Mater Sci Forum 928:277–282
go back to reference Lim TC (2019a) A class of shape-shifting composite metamaterial honeycomb structures with thermally-adaptive Poisson’s ratio signs. Compos Struct 226:111256 Lim TC (2019a) A class of shape-shifting composite metamaterial honeycomb structures with thermally-adaptive Poisson’s ratio signs. Compos Struct 226:111256
go back to reference Lim TC (2019b) 2D metamaterial with in-plane positive and negative thermal expansion and thermal shearing based on interconnected alternating bimaterials. Mater Res Express 6(11):115804 Lim TC (2019b) 2D metamaterial with in-plane positive and negative thermal expansion and thermal shearing based on interconnected alternating bimaterials. Mater Res Express 6(11):115804
go back to reference Lim TC (2019c) A reinforced kite-shaped microstructure with negative linear and area hygrothermal expansions. Key Eng Mater 803:272–277 Lim TC (2019c) A reinforced kite-shaped microstructure with negative linear and area hygrothermal expansions. Key Eng Mater 803:272–277
go back to reference Lim TC (2019d) A composite metamaterial with sign switchable elastic and hygrothermal properties induced by stress direction and environmental change reversals. Compos Struct 220:185–193 Lim TC (2019d) A composite metamaterial with sign switchable elastic and hygrothermal properties induced by stress direction and environmental change reversals. Compos Struct 220:185–193
go back to reference Lim TC (2019e) Negative environmental expansion for interconnected array of rings and sliding rods. Phys Status Solidi B 256(1):1800032 Lim TC (2019e) Negative environmental expansion for interconnected array of rings and sliding rods. Phys Status Solidi B 256(1):1800032
go back to reference Lim TC (2019f) Composite metamaterial with sign-switchable coefficients of hygroscopic, thermal and pressure expansions. Adv Compos Hybrid Mater 2(4):657–669 Lim TC (2019f) Composite metamaterial with sign-switchable coefficients of hygroscopic, thermal and pressure expansions. Adv Compos Hybrid Mater 2(4):657–669
go back to reference Lim TC (2020) Composite metamaterial square grids with sign-flipping expansion coefficients leading to a type of Islamic design. SN Applied Sciences 2(5):918 Lim TC (2020) Composite metamaterial square grids with sign-flipping expansion coefficients leading to a type of Islamic design. SN Applied Sciences 2(5):918
go back to reference Maier SA (ed) (2011) World scientific handbook of metamaterials and plasmonics. World Scientific, Singapore Maier SA (ed) (2011) World scientific handbook of metamaterials and plasmonics. World Scientific, Singapore
go back to reference Mallick PK (2008) Fiber-reinforced composites, 3rd edn. CRC Press, Boca Raton Mallick PK (2008) Fiber-reinforced composites, 3rd edn. CRC Press, Boca Raton
go back to reference Maradudin AA (ed) (2011) Structured surfaces as optical metamaterials. Cambridge University Press, Cambridge Maradudin AA (ed) (2011) Structured surfaces as optical metamaterials. Cambridge University Press, Cambridge
go back to reference Marqués R, Martín F, Sorolla M (2007) Metamaterials with negative parameters: theory, design, and microwave applications. Wiley, Hoboken Marqués R, Martín F, Sorolla M (2007) Metamaterials with negative parameters: theory, design, and microwave applications. Wiley, Hoboken
go back to reference Matlack KH, Serra-Garcia M, Palermo A, Huber SD, Daraio C (2018) Designing perturbative metamaterials from discrete models. Nat Mater 17(4):323–328 Matlack KH, Serra-Garcia M, Palermo A, Huber SD, Daraio C (2018) Designing perturbative metamaterials from discrete models. Nat Mater 17(4):323–328
go back to reference Miller W, Evans KE, Marmier A (2015) Negative linear compressibility in common materials. Appl Phys Lett 106(23):231903 Miller W, Evans KE, Marmier A (2015) Negative linear compressibility in common materials. Appl Phys Lett 106(23):231903
go back to reference Mirzaali MJ, Caracciolo A, Pahlavani H, Janbaz S, Vergani L, Zadpoor AA (2018a) Multi-material 3D printed mechanical metamaterials: rational design of elastic properties through spatial distribution of hard and soft phases. Appl Phys Lett 113(24):241903 Mirzaali MJ, Caracciolo A, Pahlavani H, Janbaz S, Vergani L, Zadpoor AA (2018a) Multi-material 3D printed mechanical metamaterials: rational design of elastic properties through spatial distribution of hard and soft phases. Appl Phys Lett 113(24):241903
go back to reference Mirzaali MJ, Janbaz S, Strano M, Vergani L, Zadpoor AA (2018b) Shape-matching soft mechanical metamaterials. Scient Rep 8:965 Mirzaali MJ, Janbaz S, Strano M, Vergani L, Zadpoor AA (2018b) Shape-matching soft mechanical metamaterials. Scient Rep 8:965
go back to reference Munk BA (2009) Metamaterials: critique and alternatives. Wiley, Hoboken Munk BA (2009) Metamaterials: critique and alternatives. Wiley, Hoboken
go back to reference Nair RU, Dutta M, Mohammed Yazeen PS, Venu KS (2018) EM material characterization techniques for metamaterials. Springer, Singapore Nair RU, Dutta M, Mohammed Yazeen PS, Venu KS (2018) EM material characterization techniques for metamaterials. Springer, Singapore
go back to reference Nakano H (2016) Low-profile natural and metamaterial antennas. Wiley, Hoboken Nakano H (2016) Low-profile natural and metamaterial antennas. Wiley, Hoboken
go back to reference Noginov MA, Podolskiy VA (eds) (2011) Tutorials in metamaterials. CRC Press, Boca Raton Noginov MA, Podolskiy VA (eds) (2011) Tutorials in metamaterials. CRC Press, Boca Raton
go back to reference Nowacki W (1987) Thermoelasticity, 2nd edn. Pergamon Press, Oxford Nowacki W (1987) Thermoelasticity, 2nd edn. Pergamon Press, Oxford
go back to reference Pan F, Li Y, Li Z, Yang J, Liu B, Chen Y (2019) 3D pixel mechanical metamaterials. Adv Mater 31(25):1900548 Pan F, Li Y, Li Z, Yang J, Liu B, Chen Y (2019) 3D pixel mechanical metamaterials. Adv Mater 31(25):1900548
go back to reference Pendry JB (2007) Fundamentals and applications of negative refraction in metamaterials. Princeton University Press, New Jersey Pendry JB (2007) Fundamentals and applications of negative refraction in metamaterials. Princeton University Press, New Jersey
go back to reference Powell D (2018) Mechanical metamaterials bend the rules of everyday physics. Proc Nat Acad Sci 115(11):2545–2547 Powell D (2018) Mechanical metamaterials bend the rules of everyday physics. Proc Nat Acad Sci 115(11):2545–2547
go back to reference Ramakrishna SA, Grzegorczyk TM (2009) Physics and applications of negative refractive index materials. CRC Press, Boca Raton Ramakrishna SA, Grzegorczyk TM (2009) Physics and applications of negative refractive index materials. CRC Press, Boca Raton
go back to reference Rout S, Sonkusale S (2017) Active metamaterials: terahertz modulators and detectors. Springer, Cham Rout S, Sonkusale S (2017) Active metamaterials: terahertz modulators and detectors. Springer, Cham
go back to reference Sarychev AK, Shalaev VM (2007) Electrodynamics of metamaterials. World Scientific, Singapore Sarychev AK, Shalaev VM (2007) Electrodynamics of metamaterials. World Scientific, Singapore
go back to reference Shvets G, Tsukerman I (2011) Plasmonics and plasmonic metamaterials. World Scientific, Singapore Shvets G, Tsukerman I (2011) Plasmonics and plasmonic metamaterials. World Scientific, Singapore
go back to reference Smolyaninov II (2018a) Hyperbolic metamaterials. IOP Publishing, Bristol Smolyaninov II (2018a) Hyperbolic metamaterials. IOP Publishing, Bristol
go back to reference Smolyaninov II (2018b) Metamaterial multiverse. IOP Publishing, Bristol Smolyaninov II (2018b) Metamaterial multiverse. IOP Publishing, Bristol
go back to reference Solymar L, Shamonina E (2009) Waves in metamaterials. Oxford University Press, Oxford Solymar L, Shamonina E (2009) Waves in metamaterials. Oxford University Press, Oxford
go back to reference Sujardi JU, Gao L, Du H, Li X, Xiong X, Fang NX, Lu Y (2019) Mechanical metamaterials and their engineering applications. Adv Eng Mater 21(3):1800864 Sujardi JU, Gao L, Du H, Li X, Xiong X, Fang NX, Lu Y (2019) Mechanical metamaterials and their engineering applications. Adv Eng Mater 21(3):1800864
go back to reference Tong XC (2018) Functional metamaterials and metadevices. Springer, Cham Tong XC (2018) Functional metamaterials and metadevices. Springer, Cham
go back to reference Vanbésien O (2012) Artificial materials. Wiley, Hoboken Vanbésien O (2012) Artificial materials. Wiley, Hoboken
go back to reference Vangelatos Z, Komvopoulos K, Grigoropoulos CP (2019) Vacancies for controlling the behavior of microstructured three-dimensional mechanical metamaterials. Math Mech Solids 24(2):511–524 Vangelatos Z, Komvopoulos K, Grigoropoulos CP (2019) Vacancies for controlling the behavior of microstructured three-dimensional mechanical metamaterials. Math Mech Solids 24(2):511–524
go back to reference Wang L, Luo H, Deng S, Sun Y, Wang C (2017) Uniaxial negative thermal expansion, negative linear compressibility, and negative Poisson’s ratio induced by specific topology in Zn[Au(CN)2]2. Inorg Chem 56(24):15101–15109 Wang L, Luo H, Deng S, Sun Y, Wang C (2017) Uniaxial negative thermal expansion, negative linear compressibility, and negative Poisson’s ratio induced by specific topology in Zn[Au(CN)2]2. Inorg Chem 56(24):15101–15109
go back to reference Werner DH (ed) (2017) Broadband metamaterials in electromagnetics: technology and applications. CRC Press, Boca Raton Werner DH (ed) (2017) Broadband metamaterials in electromagnetics: technology and applications. CRC Press, Boca Raton
go back to reference Werner DH, Kwon DH (eds) (2014) Transformation electromagnetics and metamaterials: fundamental principles and applications. Springer, London Werner DH, Kwon DH (eds) (2014) Transformation electromagnetics and metamaterials: fundamental principles and applications. Springer, London
go back to reference Wu W, Hu W, Qian G, Liao H, Xu X, Berto F (2019) Mechanical design and multifunctional applications of chiral mechanical metamaterials: a review. Mater Des 180:107950 Wu W, Hu W, Qian G, Liao H, Xu X, Berto F (2019) Mechanical design and multifunctional applications of chiral mechanical metamaterials: a review. Mater Des 180:107950
go back to reference Yang H, Ma L (2019) Multi-stable mechanical metamaterials by elastic buckling instability. J Mater Sci 54(4):3509–3526 Yang H, Ma L (2019) Multi-stable mechanical metamaterials by elastic buckling instability. J Mater Sci 54(4):3509–3526
go back to reference Zadpoor AA (2016) Mechanical meta-materials. Mater Horiz 3(5):371–381 Zadpoor AA (2016) Mechanical meta-materials. Mater Horiz 3(5):371–381
go back to reference Zayats AV, Maier SA (2013) Active plasmonics and tuneable plasmonic metamaterials. Wiley, Hoboken Zayats AV, Maier SA (2013) Active plasmonics and tuneable plasmonic metamaterials. Wiley, Hoboken
go back to reference Zhao Z, Yuan C, Lei M, Yang L, Zhang Q, Chen H, Qi HJ, Fang D (2019) Three-dimensionally printed mechanical metamaterials with thermally tunable auxetic behavior. Phys Rev Appl 11(4):044074 Zhao Z, Yuan C, Lei M, Yang L, Zhang Q, Chen H, Qi HJ, Fang D (2019) Three-dimensionally printed mechanical metamaterials with thermally tunable auxetic behavior. Phys Rev Appl 11(4):044074
go back to reference Zouhdi S, Sihvola A, Arsalane M (eds) (2002) Advances in electromagnetics of complex media and metamaterials. Springer, Dordrecht Zouhdi S, Sihvola A, Arsalane M (eds) (2002) Advances in electromagnetics of complex media and metamaterials. Springer, Dordrecht
go back to reference Zouhdi S, Sihvola A, Vinogradov AP (eds) (2009) Metamaterials and plasmonics: fundamentals, modelling, applications. Springer, Dordrecht Zouhdi S, Sihvola A, Vinogradov AP (eds) (2009) Metamaterials and plasmonics: fundamentals, modelling, applications. Springer, Dordrecht
Metadata
Title
Introduction
Author
Prof. Dr. Teik-Cheng Lim
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-6446-8_1

Premium Partners