Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

Published in:
Cover of the book

2022 | OriginalPaper | Chapter

1. Introduction

Authors : Long Xu, Yihua Yan, Xin Huang

Published in: Deep Learning in Solar Astronomy

Publisher: Springer Nature Singapore

share
SHARE

Abstract

Deep leaning has been developing very fast in recent years due to big data, high-performance computing and the breakthrough of neural network training techniques. It has been particularly successful in computer vision, machine translation, speech recognition and natural language processing. Modern astronomy concerns a big data challenge owning to high-resolution, high-precision and high-cadence telescopes. The big data presents a great challenge to data processing, statistical analysis and scientific discovery. Therefore, it is highly demanded to develop artificial intelligent algorithms to process big data aromatically, further discover complex relationship and mine knowledge hidden in massive data. As the best representative of artificial intelligence, a bunch of classical models have been developed for processing single image, video, speech and natural language. Among of them, convolutional neural network has been verified most efficient for processing image. To process time series input, like video, recurrent neural network, e.g., long short-term memory (LSTM), was developed, which was widely known for forecasting the future, e.g., event occurrence, physical parameter prediction. An overview of artificial intelligence, deep learning and astronomical big data is presented in this chapter, as the background of this book.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Zhang J, Liu T, Tao D. 2018 An Information-Theoretic View for Deep Learning. Zhang J, Liu T, Tao D. 2018 An Information-Theoretic View for Deep Learning.
2.
go back to reference Novak R, Bahri Y, Abolafia DA, Pennington J, Sohl-Dickstein J. 2018 Sensitivity and Generalization in Neural Networks: an Empirical Study. Novak R, Bahri Y, Abolafia DA, Pennington J, Sohl-Dickstein J. 2018 Sensitivity and Generalization in Neural Networks: an Empirical Study.
3.
go back to reference Canziani A, Paszke A, Culurciello E. 2017 An Analysis of Deep Neural Network Models for Practical Applications. Canziani A, Paszke A, Culurciello E. 2017 An Analysis of Deep Neural Network Models for Practical Applications.
4.
go back to reference Neyshabur B, Tomioka R, Srebro N. 2014 In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning. Neyshabur B, Tomioka R, Srebro N. 2014 In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning.
15.
go back to reference Bengio Y et al.. 2009 Learning deep architectures for AI. Foundations and trends® in Machine Learning 2, 1–127. CrossRefMATH Bengio Y et al.. 2009 Learning deep architectures for AI. Foundations and trends® in Machine Learning 2, 1–127. CrossRefMATH
16.
go back to reference LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD. 1989 Backpropagation applied to handwritten zip code recognition. Neural computation 1, 541–551. CrossRef LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD. 1989 Backpropagation applied to handwritten zip code recognition. Neural computation 1, 541–551. CrossRef
17.
go back to reference Simonyan K, Zisserman A. 2015 Very Deep Convolutional Networks for Large-Scale Image Recognition. In International Conference on Learning Representations. Simonyan K, Zisserman A. 2015 Very Deep Convolutional Networks for Large-Scale Image Recognition. In International Conference on Learning Representations.
18.
go back to reference Vincent P, Larochelle H, Bengio Y, Manzagol PA. 2008 Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning pp. 1096–1103. ACM. Vincent P, Larochelle H, Bengio Y, Manzagol PA. 2008 Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning pp. 1096–1103. ACM.
20.
21.
go back to reference Hinton GE. 2012 A practical guide to training restricted Boltzmann machines. In Neural networks: Tricks of the trade pp. 599–619. Springer. Hinton GE. 2012 A practical guide to training restricted Boltzmann machines. In Neural networks: Tricks of the trade pp. 599–619. Springer.
22.
go back to reference Sohn K, Jung DY, Lee H, Hero AO. 2011 Efficient learning of sparse, distributed, convolutional feature representations for object recognition. In Computer Vision (ICCV), 2011 IEEE International Conference on pp. 2643–2650. IEEE. Sohn K, Jung DY, Lee H, Hero AO. 2011 Efficient learning of sparse, distributed, convolutional feature representations for object recognition. In Computer Vision (ICCV), 2011 IEEE International Conference on pp. 2643–2650. IEEE.
23.
go back to reference Mohamed Ar, Dahl GE, Hinton G et al.. 2012 Acoustic modeling using deep belief networks. IEEE Trans. Audio, Speech & Language Processing 20, 14–22. CrossRef Mohamed Ar, Dahl GE, Hinton G et al.. 2012 Acoustic modeling using deep belief networks. IEEE Trans. Audio, Speech & Language Processing 20, 14–22. CrossRef
24.
go back to reference Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. 2011 Natural language processing (almost) from scratch. Journal of Machine Learning Research 12, 2493–2537. MATH Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. 2011 Natural language processing (almost) from scratch. Journal of Machine Learning Research 12, 2493–2537. MATH
25.
go back to reference Krizhevsky A, Sutskever I, Hinton G. 2012 ImageNet Classification with Deep Convolutional Neural Networks. Neural Information Processing Systems 25. Krizhevsky A, Sutskever I, Hinton G. 2012 ImageNet Classification with Deep Convolutional Neural Networks. Neural Information Processing Systems 25.
26.
go back to reference Szegedy C, Wei Liu, Yangqing Jia, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. 2015 Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1–9. Szegedy C, Wei Liu, Yangqing Jia, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. 2015 Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1–9.
27.
go back to reference He K, Zhang X, Ren S, Sun J. 2016 Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition pp. 770–778. He K, Zhang X, Ren S, Sun J. 2016 Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition pp. 770–778.
28.
go back to reference Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. 2017 Densely Connected Convolutional Networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 2261–2269. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. 2017 Densely Connected Convolutional Networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 2261–2269.
29.
go back to reference Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L. 2015 ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV) 115, 211–252. MathSciNetCrossRef Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L. 2015 ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV) 115, 211–252. MathSciNetCrossRef
30.
go back to reference Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville AC, Bengio Y. 2014 Generative Adversarial Networks. ArXiv abs/1406.2661. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville AC, Bengio Y. 2014 Generative Adversarial Networks. ArXiv abs/1406.2661.
31.
go back to reference Hochreiter S, Schmidhuber J. 1997 Long short-term memory. Neural computation 9, 1735–1780. CrossRef Hochreiter S, Schmidhuber J. 1997 Long short-term memory. Neural computation 9, 1735–1780. CrossRef
Metadata
Title
Introduction
Authors
Long Xu
Yihua Yan
Xin Huang
Copyright Year
2022
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-2746-1_1

Premium Partner