Skip to main content
Top
Published in:

2024 | OriginalPaper | Chapter

1. Introduction

Author : Miranda Louwerse

Published in: Efficient Control and Spontaneous Transitions

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quantifying the dynamics and energetics of a system as it undergoes a transition between stable conformations is central to the study of reaction mechanisms and the derivation of reaction rates. For conformational changes in biomolecules, the space the system navigates is high dimensional, presenting challenges to the observation of reactive events in simulation or experiment and obscuring dynamical details that are relevant to the reaction mechanism. Developments in recent decades in transition-path theory, transition-path sampling, and single-molecule experimental techniques have transformed our ability to observe biomolecular reactions in microscopic detail and extract general features of the mechanism. Nearly simultaneously, rapid developments in the field of stochastic thermodynamics have extended familiar notions of work, heat, and entropy to nonequilibrium contexts. One focus of these efforts is the design of protocols that dynamically manipulate the system’s conformation with minimal energetic cost. In this thesis, I investigate slow, energetically efficient driving protocols that drive a system between conformations corresponding to endpoints of a reaction, aiming to find connections between principles of efficient driving and the spontaneous transition mechanism in the absence of driving.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Brown, A.I., Sivak, D.A.: Theory of nonequilibrium free energy transduction by molecular machines. Chem. Rev. 120(1), 434–459 (2020)CrossRef Brown, A.I., Sivak, D.A.: Theory of nonequilibrium free energy transduction by molecular machines. Chem. Rev. 120(1), 434–459 (2020)CrossRef
2.
go back to reference Yanagida, T.: Fluctuation as a tool of biological molecular machines. BioSystems 93(1–2), 3–7 (2008)CrossRef Yanagida, T.: Fluctuation as a tool of biological molecular machines. BioSystems 93(1–2), 3–7 (2008)CrossRef
3.
go back to reference Neupane, K., Hoffer, N.Q., Woodside, M.T.: Measuring the local velocity along transition paths during the folding of single biological molecules. Phys. Rev. Lett. 121, 018102 (2018)ADSCrossRef Neupane, K., Hoffer, N.Q., Woodside, M.T.: Measuring the local velocity along transition paths during the folding of single biological molecules. Phys. Rev. Lett. 121, 018102 (2018)ADSCrossRef
4.
go back to reference Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9(9), 646–652 (2002)CrossRef Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9(9), 646–652 (2002)CrossRef
5.
go back to reference Hartmann, C., Banisch, R., Sarich, M., Badowski, T., Scឧutte, C.: Characterization of rare events in molecular dynamics. Entropy 16(1), 350–376 (2014) Hartmann, C., Banisch, R., Sarich, M., Badowski, T., Scឧutte, C.: Characterization of rare events in molecular dynamics. Entropy 16(1), 350–376 (2014)
6.
go back to reference Crooks, G.E.: Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 61(3), 2361–2366 (2000)ADSCrossRef Crooks, G.E.: Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 61(3), 2361–2366 (2000)ADSCrossRef
7.
go back to reference Sivak, D.A., Crooks, G.E.: Thermodynamic metrics and optimal paths. Phys. Rev. Lett. 108(19), 190602 (2012)ADSCrossRef Sivak, D.A., Crooks, G.E.: Thermodynamic metrics and optimal paths. Phys. Rev. Lett. 108(19), 190602 (2012)ADSCrossRef
8.
go back to reference Liphardt, J., Dumont, S., Smith, S.B., Tinoco, I., Bustamante, C.: Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 296, 1832–1835 (2002)ADSCrossRef Liphardt, J., Dumont, S., Smith, S.B., Tinoco, I., Bustamante, C.: Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 296, 1832–1835 (2002)ADSCrossRef
9.
go back to reference Tafoya, S., Large, S.J., Liu, S., Bustamante, C., Sivak, D.A.: Using a system’s equilibrium behavior to reduce its energy dissipation in nonequilibrium processes. Proc. Natl. Acad. Sci. U. S. A. 116(13), 5920–5924 (2019)ADSCrossRef Tafoya, S., Large, S.J., Liu, S., Bustamante, C., Sivak, D.A.: Using a system’s equilibrium behavior to reduce its energy dissipation in nonequilibrium processes. Proc. Natl. Acad. Sci. U. S. A. 116(13), 5920–5924 (2019)ADSCrossRef
10.
go back to reference Engel, M.C., Ritchie, D.B., Foster, D.A., Beach, K.S., Woodside, M.T.: Reconstructing folding energy landscape profiles from nonequilibrium pulling curves with an inverse Weierstrass integral transform. Phys. Rev. Lett. 113(23), 1–5 (2014)CrossRef Engel, M.C., Ritchie, D.B., Foster, D.A., Beach, K.S., Woodside, M.T.: Reconstructing folding energy landscape profiles from nonequilibrium pulling curves with an inverse Weierstrass integral transform. Phys. Rev. Lett. 113(23), 1–5 (2014)CrossRef
11.
go back to reference Moradi, M., Tajkhorshid, E.: Computational recipe for efficient description of large-scale conformational changes in biomolecular systems. J. Chem. Theory Comput. 10(7), 2866–2880 (2014)CrossRef Moradi, M., Tajkhorshid, E.: Computational recipe for efficient description of large-scale conformational changes in biomolecular systems. J. Chem. Theory Comput. 10(7), 2866–2880 (2014)CrossRef
12.
go back to reference Atkins, P., de Paula, J., Keeler, J.: Physical Chemistry, 11th edn. Oxford University Press, Oxford (2018) Atkins, P., de Paula, J., Keeler, J.: Physical Chemistry, 11th edn. Oxford University Press, Oxford (2018)
13.
go back to reference Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, New York (2001)MATH Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, New York (2001)MATH
15.
go back to reference Eyring, H.: The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935)ADSCrossRef Eyring, H.: The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935)ADSCrossRef
16.
go back to reference Evans, M.G., Polanyi, M.: Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875 (1935)CrossRef Evans, M.G., Polanyi, M.: Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875 (1935)CrossRef
17.
go back to reference Wigner, E.: Calculation of the rate of elementary association reactions. J. Chem. Phys. 5(0), 720–725 (1937)ADSCrossRef Wigner, E.: Calculation of the rate of elementary association reactions. J. Chem. Phys. 5(0), 720–725 (1937)ADSCrossRef
18.
go back to reference Bao, J.L., Truhlar, D.G.: Variational transition state theory: theoretical framework and recent developments. Chem. Soc. Rev. 46(24), 7548–7596 (2017)CrossRef Bao, J.L., Truhlar, D.G.: Variational transition state theory: theoretical framework and recent developments. Chem. Soc. Rev. 46(24), 7548–7596 (2017)CrossRef
19.
go back to reference Peters, B.: Chapter 10 - Transition state theory. In: Peters, B. (ed.) Reaction Rate Theory and Rare Events Simulations, pp. 227–271. Elsevier, Amsterdam (2017)CrossRef Peters, B.: Chapter 10 - Transition state theory. In: Peters, B. (ed.) Reaction Rate Theory and Rare Events Simulations, pp. 227–271. Elsevier, Amsterdam (2017)CrossRef
20.
go back to reference Peters, B.: Chapter 16 - Kramers theory. In: Peters, B. (ed.) Reaction Rate Theory and Rare Events Simulations, pp. 435–450. Elsevier, Amsterdam (2017)CrossRef Peters, B.: Chapter 16 - Kramers theory. In: Peters, B. (ed.) Reaction Rate Theory and Rare Events Simulations, pp. 435–450. Elsevier, Amsterdam (2017)CrossRef
21.
go back to reference Dudko, O.K.: Decoding the mechanical fingerprints of biomolecules. Q. Rev. Biophys. 49(e3), 1–14 (2016) Dudko, O.K.: Decoding the mechanical fingerprints of biomolecules. Q. Rev. Biophys. 49(e3), 1–14 (2016)
22.
go back to reference Dudko, O.K., Hummer, G., Szabo, A.: Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. PNAS 105(41), 15755–15760 (2008)ADSCrossRef Dudko, O.K., Hummer, G., Szabo, A.: Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. PNAS 105(41), 15755–15760 (2008)ADSCrossRef
23.
go back to reference Peters, B.: Reaction coordinates and mechanistic hypothesis tests. Annu. Rev. Phys. Chem. 67, 669–690 (2016)ADSCrossRef Peters, B.: Reaction coordinates and mechanistic hypothesis tests. Annu. Rev. Phys. Chem. 67, 669–690 (2016)ADSCrossRef
24.
go back to reference Langer, J.: Statistical theory of the decay of metastable states. Ann. Phys. (N. Y). 54(2), 258–275 (1969) Langer, J.: Statistical theory of the decay of metastable states. Ann. Phys. (N. Y). 54(2), 258–275 (1969)
25.
go back to reference Chodera, J.D., Noé, F.: Markov state models of biomolecular conformational dynamics. Curr. Opin. Struct. Biol. 25, 135–144 (2014)CrossRef Chodera, J.D., Noé, F.: Markov state models of biomolecular conformational dynamics. Curr. Opin. Struct. Biol. 25, 135–144 (2014)CrossRef
26.
go back to reference Dellago, C., Bolhuis, P.G., Csajka, F.S., Chandler, D.: Transition path sampling and the calculation of rate constants. J. Chem. Phys. 108, 1964 (1998)ADSCrossRef Dellago, C., Bolhuis, P.G., Csajka, F.S., Chandler, D.: Transition path sampling and the calculation of rate constants. J. Chem. Phys. 108, 1964 (1998)ADSCrossRef
27.
go back to reference Bolhuis, P.G., Chandler, D., Dellago, C., Geissler, P.L.: Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 53, 291–318 (2002)ADSCrossRef Bolhuis, P.G., Chandler, D., Dellago, C., Geissler, P.L.: Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 53, 291–318 (2002)ADSCrossRef
28.
go back to reference Faradjian, A.K., Elber, R.: Computing time scales from reaction coordinates by milestoning. J. Chem. Phys. 120, 10880–10889 (2004)ADSCrossRef Faradjian, A.K., Elber, R.: Computing time scales from reaction coordinates by milestoning. J. Chem. Phys. 120, 10880–10889 (2004)ADSCrossRef
30.
go back to reference Metzner, P., Schutte, C., Vanden-Eijnden, E.: Transition path theory for Markov jump processes. Multiscale Model. Simul. 7(3), 1192–1219 (2009)MathSciNetMATHCrossRef Metzner, P., Schutte, C., Vanden-Eijnden, E.: Transition path theory for Markov jump processes. Multiscale Model. Simul. 7(3), 1192–1219 (2009)MathSciNetMATHCrossRef
31.
go back to reference Van Erp, T.S., Moroni, D., Bolhuis, P.G.: A novel path sampling method for the calculation of rate constants. J. Chem. Phys. 118, 6617 (2003) Van Erp, T.S., Moroni, D., Bolhuis, P.G.: A novel path sampling method for the calculation of rate constants. J. Chem. Phys. 118, 6617 (2003)
32.
go back to reference Allen, R.J., Warren, P.B., Ten Wolde, P.R.: Sampling rare switching events in biochemical networks. Phys. Rev. Lett. 94, 018104 (2005)ADSCrossRef Allen, R.J., Warren, P.B., Ten Wolde, P.R.: Sampling rare switching events in biochemical networks. Phys. Rev. Lett. 94, 018104 (2005)ADSCrossRef
33.
go back to reference Peters, B.: Chapter 13 - Reactive flux. In: Peters, B. (ed.) Reaction Rate Theory and Rare Events Simulations, pp. 335–362. Elsevier, Amsterdam (2017)CrossRef Peters, B.: Chapter 13 - Reactive flux. In: Peters, B. (ed.) Reaction Rate Theory and Rare Events Simulations, pp. 335–362. Elsevier, Amsterdam (2017)CrossRef
34.
35.
go back to reference Du, R., Pande, V.S., Grosberg, A.Y., Tanaka, T., Shakhnovich, E.: On the transition coordinate for protein folding. J. Chem. Phys. 108, 334–350 (1998)ADSCrossRef Du, R., Pande, V.S., Grosberg, A.Y., Tanaka, T., Shakhnovich, E.: On the transition coordinate for protein folding. J. Chem. Phys. 108, 334–350 (1998)ADSCrossRef
36.
go back to reference Berezhkovskii, A., Szabo, A.: One-dimensional reaction coordinates for diffusive activated rate processes in many dimensions. J. Chem. Phys. 122, 014503 (2005)ADSCrossRef Berezhkovskii, A., Szabo, A.: One-dimensional reaction coordinates for diffusive activated rate processes in many dimensions. J. Chem. Phys. 122, 014503 (2005)ADSCrossRef
37.
go back to reference Berezhkovskii, A.M., Szabo, A.: Diffusion along the splitting/commitment probability reaction coordinate. J. Phys. Chem. B 117, 13115–13119 (2013)CrossRef Berezhkovskii, A.M., Szabo, A.: Diffusion along the splitting/commitment probability reaction coordinate. J. Phys. Chem. B 117, 13115–13119 (2013)CrossRef
38.
go back to reference Pyo, A.G.T., Hoffer, N.Q., Neupane, K., Woodside, M.T.: Transition-path properties for folding reactions in the limit of small barriers. J. Chem. Phys. 149, 115101 (2018)ADSCrossRef Pyo, A.G.T., Hoffer, N.Q., Neupane, K., Woodside, M.T.: Transition-path properties for folding reactions in the limit of small barriers. J. Chem. Phys. 149, 115101 (2018)ADSCrossRef
39.
go back to reference Weinan, E., Vanden-Eijnden, E.: Transition-path theory and path-finding algorithms for the study of rare events. Annu. Rev. Phys. Chem. 61, 391–420 (2010)CrossRef Weinan, E., Vanden-Eijnden, E.: Transition-path theory and path-finding algorithms for the study of rare events. Annu. Rev. Phys. Chem. 61, 391–420 (2010)CrossRef
40.
go back to reference Li, W., Ma, A.: Recent developments in methods for identifying reaction coordinates. Mol. Simul. 40(10–11), 784–793 (2014)CrossRef Li, W., Ma, A.: Recent developments in methods for identifying reaction coordinates. Mol. Simul. 40(10–11), 784–793 (2014)CrossRef
41.
go back to reference Peters, B., Bolhuis, P.G., Mullen, R.G., Shea, J.-E.: Reaction coordinates, one-dimensional Smoluchowski equations, and a test for dynamical self-consistency. J. Chem. Phys. 138, 054106 (2013)ADSCrossRef Peters, B., Bolhuis, P.G., Mullen, R.G., Shea, J.-E.: Reaction coordinates, one-dimensional Smoluchowski equations, and a test for dynamical self-consistency. J. Chem. Phys. 138, 054106 (2013)ADSCrossRef
42.
go back to reference Banushkina, P.V., Krivov, S.V.: Optimal reaction coordinates. WIREs Comput. Mol. Sci. 6, 748–763 (2016)CrossRef Banushkina, P.V., Krivov, S.V.: Optimal reaction coordinates. WIREs Comput. Mol. Sci. 6, 748–763 (2016)CrossRef
43.
44.
go back to reference Li, Q., Lin, B., Ren, W.: Computing committor functions for the study of rare events using deep learning. J. Chem. Phys. 151, 54112 (2019)ADSCrossRef Li, Q., Lin, B., Ren, W.: Computing committor functions for the study of rare events using deep learning. J. Chem. Phys. 151, 54112 (2019)ADSCrossRef
45.
go back to reference Rotskoff, G.M., Mitchell, A.R., Vanden-Eijnden, E.: Active importance sampling for variational objectives dominated by rare events: consequences for optimization and generalization. In: Mathematical and Scientific Machine Learning PMLR, pp. 757–780 (2022) Rotskoff, G.M., Mitchell, A.R., Vanden-Eijnden, E.: Active importance sampling for variational objectives dominated by rare events: consequences for optimization and generalization. In: Mathematical and Scientific Machine Learning PMLR, pp. 757–780 (2022)
46.
go back to reference Bolhuis, P.G., Dellago, C.: Practical and conceptual path sampling issues. Eur. Phys. J. Spec. Top. 224, 2409–2427 (2015)CrossRef Bolhuis, P.G., Dellago, C.: Practical and conceptual path sampling issues. Eur. Phys. J. Spec. Top. 224, 2409–2427 (2015)CrossRef
47.
go back to reference Pérez-Hernández, G., Paul, F., Giorgino, T., De Fabritiis, G., Noé, F.: Identification of slow molecular order parameters for Markov model construction. J. Chem. Phys. 139(1), 015102 (2013)ADSCrossRef Pérez-Hernández, G., Paul, F., Giorgino, T., De Fabritiis, G., Noé, F.: Identification of slow molecular order parameters for Markov model construction. J. Chem. Phys. 139(1), 015102 (2013)ADSCrossRef
48.
go back to reference Hernández, C.X., Wayment-Steele, H.K., Sultan, M.M., Husic, B.E., Pande, V.S.: Variational encoding of complex dynamics. Phys. Rev. E 97(6), 1–11 (2018)CrossRef Hernández, C.X., Wayment-Steele, H.K., Sultan, M.M., Husic, B.E., Pande, V.S.: Variational encoding of complex dynamics. Phys. Rev. E 97(6), 1–11 (2018)CrossRef
49.
go back to reference Wang, Y., Tiwary, P.: State predictive information bottleneck. J. Chem. Phys. 154, 134111 (2021)ADSCrossRef Wang, Y., Tiwary, P.: State predictive information bottleneck. J. Chem. Phys. 154, 134111 (2021)ADSCrossRef
50.
go back to reference Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78(14), 2690–2693 (1997)ADSCrossRef Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78(14), 2690–2693 (1997)ADSCrossRef
51.
go back to reference Seifert, U.: Stochastic thermodynamics, fluctuation theorems and molecular ma- chines. Rep. Prog. Phys. 75, 126001 (2012)ADSCrossRef Seifert, U.: Stochastic thermodynamics, fluctuation theorems and molecular ma- chines. Rep. Prog. Phys. 75, 126001 (2012)ADSCrossRef
52.
go back to reference Barato, A.C., Seifert, U.: Thermodynamic uncertainty relation for biomolecular processes. Phys. Rev. Lett. 114(15), 1–5 (2015)MathSciNetCrossRef Barato, A.C., Seifert, U.: Thermodynamic uncertainty relation for biomolecular processes. Phys. Rev. Lett. 114(15), 1–5 (2015)MathSciNetCrossRef
53.
go back to reference Gingrich, T.R., Horowitz, J.M., Perunov, N., England, J.L.: Dissipation bounds all steady-state current fluctuations. Phys. Rev. Lett. 116(12), 1–5 (2016)CrossRef Gingrich, T.R., Horowitz, J.M., Perunov, N., England, J.L.: Dissipation bounds all steady-state current fluctuations. Phys. Rev. Lett. 116(12), 1–5 (2016)CrossRef
54.
go back to reference Gupta, A.N., Vincent, A., Neupane, K., Yu, H., Wang, F., Woodside, M.T.: Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements. Nat. Phys. 7(8), 631–634 (2011)CrossRef Gupta, A.N., Vincent, A., Neupane, K., Yu, H., Wang, F., Woodside, M.T.: Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements. Nat. Phys. 7(8), 631–634 (2011)CrossRef
55.
go back to reference Dellago, C., Hummer, G.: Computing equilibrium free energies using non-equilibrium molecular dynamics. Entropy 16(1), 41–61 (2014)ADSMathSciNetCrossRef Dellago, C., Hummer, G.: Computing equilibrium free energies using non-equilibrium molecular dynamics. Entropy 16(1), 41–61 (2014)ADSMathSciNetCrossRef
56.
go back to reference Morfill, J., Neumann, J., Blank, K., Steinbach, U., Puchner, E.M., Gottschalk, K.E., Gaub, H.E.: Force-based analysis of multidimensional energy landscapes: application of dynamic force spectroscopy and steered molecular dynamics simulations to an antibody fragment-peptide complex. J. Mol. Biol. 381(5), 1253–1266 (2008)CrossRef Morfill, J., Neumann, J., Blank, K., Steinbach, U., Puchner, E.M., Gottschalk, K.E., Gaub, H.E.: Force-based analysis of multidimensional energy landscapes: application of dynamic force spectroscopy and steered molecular dynamics simulations to an antibody fragment-peptide complex. J. Mol. Biol. 381(5), 1253–1266 (2008)CrossRef
57.
go back to reference Hummer, G., Szabo, A.: Free energy surfaces from single-molecule force spectroscopy. Acc. Chem. Res. 38, 504–513 (2005)CrossRef Hummer, G., Szabo, A.: Free energy surfaces from single-molecule force spectroscopy. Acc. Chem. Res. 38, 504–513 (2005)CrossRef
58.
go back to reference Suzuki, Y., Dudko, O.K.: Biomolecules under mechanical stress: a simple mechanism of complex behavior. J. Chem. Phys. 134, 65102 (2011)CrossRef Suzuki, Y., Dudko, O.K.: Biomolecules under mechanical stress: a simple mechanism of complex behavior. J. Chem. Phys. 134, 65102 (2011)CrossRef
59.
go back to reference Bennett, C.H.: Efficient estimation of free energy differences in Monte Carlo data. J. Comp. Phys. 22(2), 245–268 (1976)ADSCrossRef Bennett, C.H.: Efficient estimation of free energy differences in Monte Carlo data. J. Comp. Phys. 22(2), 245–268 (1976)ADSCrossRef
60.
go back to reference Shenfeld, D.K., Xu, H., Eastwood, M.P., Dror, R.O., Shaw, D.E.: Minimizing thermodynamic length to select intermediate states for free-energy calculations and replica-exchange simulations. Phys. Rev. E 80, 046705 (2009)ADSCrossRef Shenfeld, D.K., Xu, H., Eastwood, M.P., Dror, R.O., Shaw, D.E.: Minimizing thermodynamic length to select intermediate states for free-energy calculations and replica-exchange simulations. Phys. Rev. E 80, 046705 (2009)ADSCrossRef
61.
go back to reference Kim, S., Kim, Y.W., Talkner, P., Yi, J.: Comparison of free-energy estimators and their dependence on dissipated work. Phys. Rev. E 86(4), 1–10 (2012)CrossRef Kim, S., Kim, Y.W., Talkner, P., Yi, J.: Comparison of free-energy estimators and their dependence on dissipated work. Phys. Rev. E 86(4), 1–10 (2012)CrossRef
62.
go back to reference Blaber, S., Sivak, D.A.: Skewed thermodynamic geometry and optimal free energy estimation. J. Chem. Phys. 153(24), 244119 (2020)ADSCrossRef Blaber, S., Sivak, D.A.: Skewed thermodynamic geometry and optimal free energy estimation. J. Chem. Phys. 153(24), 244119 (2020)ADSCrossRef
63.
go back to reference Hummer, G., Szabo, A.: Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc. Natl. Acad. Sci. U. S. A. 98(7), 3658–3661 (2001)ADSCrossRef Hummer, G., Szabo, A.: Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc. Natl. Acad. Sci. U. S. A. 98(7), 3658–3661 (2001)ADSCrossRef
64.
go back to reference Andresen, B., Salamon, P.: Thermodynamic geometry determines optimal temperature profile in distillation column. In: Hansen, P., Jacobsen, B., Mosegaard, K. (eds.) Methods and Applications of Inversion, pp. 15–30. Springer, Berlin (2000)CrossRef Andresen, B., Salamon, P.: Thermodynamic geometry determines optimal temperature profile in distillation column. In: Hansen, P., Jacobsen, B., Mosegaard, K. (eds.) Methods and Applications of Inversion, pp. 15–30. Springer, Berlin (2000)CrossRef
65.
go back to reference Huang, P.S., Boyken, S.E., Baker, D.: The coming of age of de novo protein design. Nature 537(7620), 320–327 (2016)ADSCrossRef Huang, P.S., Boyken, S.E., Baker, D.: The coming of age of de novo protein design. Nature 537(7620), 320–327 (2016)ADSCrossRef
66.
go back to reference Schmiedl, T., Seifert, U.: Optimal finite-time processes in stochastic thermodynamics. Phys. Rev. Lett. 98(10), 1–4 (2007)CrossRef Schmiedl, T., Seifert, U.: Optimal finite-time processes in stochastic thermodynamics. Phys. Rev. Lett. 98(10), 1–4 (2007)CrossRef
67.
68.
go back to reference Bonança, M.V.S., Deffner, S.: Optimal driving of isothermal processes close to equilibrium. J. Chem. Phys. 140, 244119 (2014)ADSCrossRef Bonança, M.V.S., Deffner, S.: Optimal driving of isothermal processes close to equilibrium. J. Chem. Phys. 140, 244119 (2014)ADSCrossRef
69.
go back to reference Large, S.J., Sivak, D.A.: Optimal discrete control: minimizing dissipation in discretely driven nonequilibrium systems. J. Stat. Mech. Theory Exp. 2019(8) (2019) Large, S.J., Sivak, D.A.: Optimal discrete control: minimizing dissipation in discretely driven nonequilibrium systems. J. Stat. Mech. Theory Exp. 2019(8) (2019)
70.
go back to reference Blaber, S., Louwerse, M.D., Sivak, D.A.: Steps minimize dissipation in rapidly driven stochastic systems. Phys. Rev. E 104(2), 1–6 (2021)MathSciNetCrossRef Blaber, S., Louwerse, M.D., Sivak, D.A.: Steps minimize dissipation in rapidly driven stochastic systems. Phys. Rev. E 104(2), 1–6 (2021)MathSciNetCrossRef
71.
go back to reference Mandal, D., Jarzynski, C.: Analysis of slow transitions between nonequilibrium steady states. J. Stat. Mech. 063204 (2016) Mandal, D., Jarzynski, C.: Analysis of slow transitions between nonequilibrium steady states. J. Stat. Mech. 063204 (2016)
72.
go back to reference Berkowitz, M., Morgan, J.D., Mccammon, J.A., Northrup, S.H.: Diffusion-controlled reactions: a variational formula for the optimum reaction coordinate. J. Chem. Phys. 79(10), 5563–2325 (1983)ADSCrossRef Berkowitz, M., Morgan, J.D., Mccammon, J.A., Northrup, S.H.: Diffusion-controlled reactions: a variational formula for the optimum reaction coordinate. J. Chem. Phys. 79(10), 5563–2325 (1983)ADSCrossRef
73.
go back to reference Maragliano, L., Fischer, A., Vanden-Eijnden, E., Ciccotti, G.: String method in collective variables: minimum free energy paths and isocommittor surfaces. J. Chem. Phys. 125(2), 024106 (2006)ADSCrossRef Maragliano, L., Fischer, A., Vanden-Eijnden, E., Ciccotti, G.: String method in collective variables: minimum free energy paths and isocommittor surfaces. J. Chem. Phys. 125(2), 024106 (2006)ADSCrossRef
74.
go back to reference Zhao, R., Shen, J., Skeel, R.D.: Maximum flux transition paths of conformational change. J. Chem. Theory Comput. 6(8), 2411–2423 (2010)CrossRef Zhao, R., Shen, J., Skeel, R.D.: Maximum flux transition paths of conformational change. J. Chem. Theory Comput. 6(8), 2411–2423 (2010)CrossRef
75.
go back to reference Johnson, M.E., Hummer, G.: Characterization of a dynamic string method for the construction of transition pathways in molecular reactions. J. Phys. Chem. B 116(29), 8573–8583 (2012)CrossRef Johnson, M.E., Hummer, G.: Characterization of a dynamic string method for the construction of transition pathways in molecular reactions. J. Phys. Chem. B 116(29), 8573–8583 (2012)CrossRef
76.
77.
go back to reference Louwerse, M.D., Sivak, D.A.: Multidimensional minimum-work control of a 2D Ising model. J. Chem. Phys. 156, 194108 (2022)ADSCrossRef Louwerse, M.D., Sivak, D.A.: Multidimensional minimum-work control of a 2D Ising model. J. Chem. Phys. 156, 194108 (2022)ADSCrossRef
Metadata
Title
Introduction
Author
Miranda Louwerse
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-40534-1_1

Premium Partners