Skip to main content
Top
Published in:
Cover of the book

2015 | OriginalPaper | Chapter

1. Introduction

Author : Prof. Dr. Dongdong Gu

Published in: Laser Additive Manufacturing of High-Performance Materials

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Different from conventional materials removal method, additive manufacturing (AM) is based on a novel material incremental manufacturing philosophy. Laser-based AM implies layer-by-layer shaping and consolidation of feedstock, typically powder materials, to arbitrary configurations, using a computer controlled laser as energy resource. The current development focus of AM is to produce complex-shaped functional metallic components, including metals, alloys, and metal matrix composites (MMCs), to meet the demanding requirements from aerospace, defense, automotive, and biomedical industries. In this chapter, the development history of AM technology is briefly introduced and the nomenclature principles for naming different types of AM processes are reviewed. The general processing philosophy of AM is addressed and the typical applications of AM technology are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Due to the abundant nomenclature of different AM processes, the basic phrases (i.e., LS, LM, and LMD) are used in Chaps. 1 and 2 to denominate the three most prevailing variants of AM technology for the fabrication of metallic components.
 
Literature
2.
go back to reference Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Springer Science + Business Media, New YorkCrossRef Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Springer Science + Business Media, New YorkCrossRef
3.
go back to reference Beaman JJ, Deckard CR (1990) Selective laser sintering with assisted powder handling. US Patent 4938816 Beaman JJ, Deckard CR (1990) Selective laser sintering with assisted powder handling. US Patent 4938816
4.
go back to reference Bourell DL, Marcus HL, Barlow JW, Beaman JJ, Deckard CR (1991) Multiple material systems for selective beam sintering. US Patent 5076869 Bourell DL, Marcus HL, Barlow JW, Beaman JJ, Deckard CR (1991) Multiple material systems for selective beam sintering. US Patent 5076869
5.
go back to reference Chua CK, Leong KF, Lim CS (2003) Rapid prototyping: principles and applications. World Scientific Publishing Company, SingaporeCrossRef Chua CK, Leong KF, Lim CS (2003) Rapid prototyping: principles and applications. World Scientific Publishing Company, SingaporeCrossRef
6.
go back to reference West AP, Sambu SP, Rosen DW (2001) A process planning method for improving build performance in stereolithography. Comput Aided Des 33(1):65–79CrossRef West AP, Sambu SP, Rosen DW (2001) A process planning method for improving build performance in stereolithography. Comput Aided Des 33(1):65–79CrossRef
7.
go back to reference Park J, Tari MJ, Hahn HT (2000) Characterization of the laminated object manufacturing (LOM) process. Rapid Prototyp J 6(1):36–49CrossRef Park J, Tari MJ, Hahn HT (2000) Characterization of the laminated object manufacturing (LOM) process. Rapid Prototyp J 6(1):36–49CrossRef
8.
go back to reference Gray RW, Baird DG, Bohn JH (1998) Effects of processing conditions on short TCLP fiber reinforced FDM parts. Rapid Prototyp J 4(1):14–25CrossRef Gray RW, Baird DG, Bohn JH (1998) Effects of processing conditions on short TCLP fiber reinforced FDM parts. Rapid Prototyp J 4(1):14–25CrossRef
9.
go back to reference Bourell DL, Marcus HL, Barlow JW et al (1992) Selective laser sintering of metal and ceramics. Int J Powder Metallurgy 28(4):369–381 Bourell DL, Marcus HL, Barlow JW et al (1992) Selective laser sintering of metal and ceramics. Int J Powder Metallurgy 28(4):369–381
10.
go back to reference Childs THC, Berzins M, Ryder GR et al (1999) Selective laser sintering of an amorphous polymer—simulations and experiments. Proc Inst Mech Eng B 213(4):333–349CrossRef Childs THC, Berzins M, Ryder GR et al (1999) Selective laser sintering of an amorphous polymer—simulations and experiments. Proc Inst Mech Eng B 213(4):333–349CrossRef
11.
go back to reference Ciraud P (1973) Verfahren und vorrichtung zur herstellung beliebiger gegenstande aus beliebigem schmelzbarem material. German Patent DE 2263777 Ciraud P (1973) Verfahren und vorrichtung zur herstellung beliebiger gegenstande aus beliebigem schmelzbarem material. German Patent DE 2263777
12.
go back to reference Housholder R (1981) Molding process. US Patent 4247508 Housholder R (1981) Molding process. US Patent 4247508
13.
go back to reference Santos EC, Shiomi M, Osakada K et al (2006) Rapid manufacturing of metal components by laser forming. Int J Mach Tool Manuf 46(12–13):1459–1468CrossRef Santos EC, Shiomi M, Osakada K et al (2006) Rapid manufacturing of metal components by laser forming. Int J Mach Tool Manuf 46(12–13):1459–1468CrossRef
14.
go back to reference Deckard C (1989) Methods and apparatus for producing parts by selective laser sintering. US Patent 4863538 Deckard C (1989) Methods and apparatus for producing parts by selective laser sintering. US Patent 4863538
17.
go back to reference Shellabear ON (2004) DMLS—development history and state of the art. In: Geiger M, Otto A (eds) Proceedings of the Fourth Laser Assisted Net Shape Engineering, LANE 2004, Erlangen, Germany, 2004 Shellabear ON (2004) DMLS—development history and state of the art. In: Geiger M, Otto A (eds) Proceedings of the Fourth Laser Assisted Net Shape Engineering, LANE 2004, Erlangen, Germany, 2004
21.
go back to reference Arcella F (1988) Casting shapes. US Patent 4818562 Arcella F (1988) Casting shapes. US Patent 4818562
22.
go back to reference Wohlers T, Gornet T (2011) History of additive manufacturing. Wohlers Report 2011, Wohlers Associates, Inc. Wohlers T, Gornet T (2011) History of additive manufacturing. Wohlers Report 2011, Wohlers Associates, Inc.
24.
go back to reference Mazumder J, Choi J, Nagarathnam K et al (1997) The direct metal deposition of H13 tool steel for 3-D components. JOM 49:55–60CrossRef Mazumder J, Choi J, Nagarathnam K et al (1997) The direct metal deposition of H13 tool steel for 3-D components. JOM 49:55–60CrossRef
25.
go back to reference Das S, Wohlert M, Beaman JJ et al (1998) Producing metal parts with selective laser sintering/hot isostatic pressing. JOM 50(12):17–20CrossRef Das S, Wohlert M, Beaman JJ et al (1998) Producing metal parts with selective laser sintering/hot isostatic pressing. JOM 50(12):17–20CrossRef
26.
go back to reference Mazumder J, Schifferer A, Choi J (1999) Direct materials deposition: designed macro and microstructure. Mater Res Innov 3(3):118–131CrossRef Mazumder J, Schifferer A, Choi J (1999) Direct materials deposition: designed macro and microstructure. Mater Res Innov 3(3):118–131CrossRef
27.
go back to reference Mazumder J, Dutta D, Kikuchi N et al (2000) Closed loop direct metal deposition: art to part. Opt Laser Eng 34(4–6):397–414CrossRef Mazumder J, Dutta D, Kikuchi N et al (2000) Closed loop direct metal deposition: art to part. Opt Laser Eng 34(4–6):397–414CrossRef
28.
go back to reference Levy N, Schindel R, Kruth JP (2003) Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann—Manuf Technol 52(2):589–609CrossRef Levy N, Schindel R, Kruth JP (2003) Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann—Manuf Technol 52(2):589–609CrossRef
29.
go back to reference King D, Tansey T (2003) Rapid tooling: selective laser sintering injection tooling. J Mater Process Technol 132(1–3):42–48CrossRef King D, Tansey T (2003) Rapid tooling: selective laser sintering injection tooling. J Mater Process Technol 132(1–3):42–48CrossRef
30.
go back to reference Hollander DA, von Walter M, Wirtz T, et al (2006) Structural, mechanical and in vitro characterization of individually structured Ti–6Al–4V produced by direct laser forming. Biomaterials 27(7):955–963CrossRef Hollander DA, von Walter M, Wirtz T, et al (2006) Structural, mechanical and in vitro characterization of individually structured Ti–6Al–4V produced by direct laser forming. Biomaterials 27(7):955–963CrossRef
31.
go back to reference España FA, Balla VK, Bose S et al (2010) Design and fabrication of CoCrMo alloy based novel structures for load bearing implants using laser engineered net shaping. Mater Sci Eng C 30(1):50–57CrossRef España FA, Balla VK, Bose S et al (2010) Design and fabrication of CoCrMo alloy based novel structures for load bearing implants using laser engineered net shaping. Mater Sci Eng C 30(1):50–57CrossRef
33.
go back to reference Tolochko NK, Savich VV, Laoui T et al (2002) Dental root implants produced by the combined selective laser sintering/melting of titanium powders. Proc Inst Mech Eng L 216(L4):267–270 Tolochko NK, Savich VV, Laoui T et al (2002) Dental root implants produced by the combined selective laser sintering/melting of titanium powders. Proc Inst Mech Eng L 216(L4):267–270
34.
go back to reference Morgan R, Sutcliffe CJ, O’Neill W (2004) Density analysis of direct metal laser re-melted 316 L stainless steel cubic primitives. J Mater Sci 39(4):1195–1205CrossRef Morgan R, Sutcliffe CJ, O’Neill W (2004) Density analysis of direct metal laser re-melted 316 L stainless steel cubic primitives. J Mater Sci 39(4):1195–1205CrossRef
36.
go back to reference Kelbassa I, Wohlers T, Caffrey T (2012) Quo vadis, laser additive manufacturing? J Laser Appl 24(5):050101CrossRef Kelbassa I, Wohlers T, Caffrey T (2012) Quo vadis, laser additive manufacturing? J Laser Appl 24(5):050101CrossRef
37.
go back to reference Atwood C, Griffith M, Harwell L et al (1998) Laser engineered net shaping (LENSTM): a tool for direct fabrication of metal parts. In: Proceedings of international congress on the applications of lasers and electro-optics, Orlando, FL, USA, November, 1998 Atwood C, Griffith M, Harwell L et al (1998) Laser engineered net shaping (LENSTM): a tool for direct fabrication of metal parts. In: Proceedings of international congress on the applications of lasers and electro-optics, Orlando, FL, USA, November, 1998
38.
go back to reference Brooks J, Robino C, Headley T et al (1999) Microstructure and property optimization of LENS deposited H13 tool steel. In: 10th solid freeform fabrication symposium (SFF), The University of Texas at Austin, August 1999 Brooks J, Robino C, Headley T et al (1999) Microstructure and property optimization of LENS deposited H13 tool steel. In: 10th solid freeform fabrication symposium (SFF), The University of Texas at Austin, August 1999
39.
go back to reference Lewis GK, Schlienger E (2000) Practical considerations and capabilities for laser assisted direct metal deposition. Mater Des 21(4):417–423CrossRef Lewis GK, Schlienger E (2000) Practical considerations and capabilities for laser assisted direct metal deposition. Mater Des 21(4):417–423CrossRef
40.
go back to reference Pinkerton AJ, Li L (2004) The behaviour of water- and gas-atomised tool steel powders in coaxial laser freeform fabrication. Thin Solid Films 453–454:600–605CrossRef Pinkerton AJ, Li L (2004) The behaviour of water- and gas-atomised tool steel powders in coaxial laser freeform fabrication. Thin Solid Films 453–454:600–605CrossRef
41.
go back to reference Pinkerton AJ, Li L (2005) Multiple-layer laser deposition of steel components using gas- and water-atomised powders: the differences and the mechanisms leading to them. Appl Surf Sci 247(1–4):175–181CrossRef Pinkerton AJ, Li L (2005) Multiple-layer laser deposition of steel components using gas- and water-atomised powders: the differences and the mechanisms leading to them. Appl Surf Sci 247(1–4):175–181CrossRef
42.
go back to reference Wang F, Mei J, Wu XH (2008) Direct laser fabrication of Ti6Al4V/TiB. J Mater Process Technol 195(1–3):321–326CrossRef Wang F, Mei J, Wu XH (2008) Direct laser fabrication of Ti6Al4V/TiB. J Mater Process Technol 195(1–3):321–326CrossRef
43.
go back to reference Wu X (2007) A review of laser fabrication of metallic engineering components and of materials. Mater Sci Technol 23(6):631–640CrossRef Wu X (2007) A review of laser fabrication of metallic engineering components and of materials. Mater Sci Technol 23(6):631–640CrossRef
44.
go back to reference Liu FC, Lin X, Yang GL et al (2011) Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy. Opt Laser Technol 43(1):208–213CrossRef Liu FC, Lin X, Yang GL et al (2011) Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy. Opt Laser Technol 43(1):208–213CrossRef
45.
go back to reference Lin X, Yue TM, Yang HO et al (2006) Microstructure and phase evolution in laser rapid forming of a functionally graded Ti–Rene88DT alloy. Acta Mater 54(7):1901–1915CrossRef Lin X, Yue TM, Yang HO et al (2006) Microstructure and phase evolution in laser rapid forming of a functionally graded Ti–Rene88DT alloy. Acta Mater 54(7):1901–1915CrossRef
46.
go back to reference Li J, Wang HM (2010) Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy Rene’41 by laser melting deposition manufacturing. Mater Sci Eng A 527(18–19):4823–4829CrossRef Li J, Wang HM (2010) Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy Rene’41 by laser melting deposition manufacturing. Mater Sci Eng A 527(18–19):4823–4829CrossRef
47.
go back to reference Tian XJ, Zhang SQ, Li A et al (2010) Effect of annealing temperature on the notch impact toughness of a laser melting deposited titanium alloy Ti–4Al–1.5Mn. Mater Sci Eng A 527(7–8):1821–1827CrossRef Tian XJ, Zhang SQ, Li A et al (2010) Effect of annealing temperature on the notch impact toughness of a laser melting deposited titanium alloy Ti–4Al–1.5Mn. Mater Sci Eng A 527(7–8):1821–1827CrossRef
48.
go back to reference Lü L, Fuh JYH, Wong YS (2001) Laser-induced materials and processes for rapid prototyping. Kluwer Academic Publishers, Norwell Lü L, Fuh JYH, Wong YS (2001) Laser-induced materials and processes for rapid prototyping. Kluwer Academic Publishers, Norwell
50.
go back to reference Dutta B, Singh V, Natu H et al (2009) Direct metal deposition. Adv Mater Process 167(3):29–31 Dutta B, Singh V, Natu H et al (2009) Direct metal deposition. Adv Mater Process 167(3):29–31
51.
go back to reference Mudge RP, Wald NR (2007) Laser engineered net shaping advances additive manufacturing and repair. Weld J 86(1):44–48 Mudge RP, Wald NR (2007) Laser engineered net shaping advances additive manufacturing and repair. Weld J 86(1):44–48
52.
go back to reference Kruth JP, Levy G, Klocke F et al (2007) Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann Manuf Technol 56(2):730–759CrossRef Kruth JP, Levy G, Klocke F et al (2007) Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann Manuf Technol 56(2):730–759CrossRef
53.
go back to reference Palčič I, Balažic M, Milfelner M et al (2009) Potential of laser engineered net shaping (LENS) technology. Mater Manuf Process 24(7–8):750–753 Palčič I, Balažic M, Milfelner M et al (2009) Potential of laser engineered net shaping (LENS) technology. Mater Manuf Process 24(7–8):750–753
54.
go back to reference Xiong YH, Hofmeister WH, Cheng Z, et al (2009) In situ thermal imaging and three-dimensional finite element modeling of tungsten carbide–cobalt during laser deposition. Acta Mater 57(18):5419–5429CrossRef Xiong YH, Hofmeister WH, Cheng Z, et al (2009) In situ thermal imaging and three-dimensional finite element modeling of tungsten carbide–cobalt during laser deposition. Acta Mater 57(18):5419–5429CrossRef
55.
go back to reference Wang L, Felicelli S (2007) Process modeling in laser deposition of multilayer SS410 steel. Trans ASME J Manuf Sci Eng 129(6):1028–1034CrossRef Wang L, Felicelli S (2007) Process modeling in laser deposition of multilayer SS410 steel. Trans ASME J Manuf Sci Eng 129(6):1028–1034CrossRef
56.
go back to reference Chen TB, Zhang YW (2006) Analysis of melting in a subcooled two-component metal powder layer with constant heat flux. Appl Therm Eng 26(7):751–765CrossRef Chen TB, Zhang YW (2006) Analysis of melting in a subcooled two-component metal powder layer with constant heat flux. Appl Therm Eng 26(7):751–765CrossRef
57.
go back to reference Simchi A, Pohl H (2004) Direct laser sintering of iron–graphite powder mixture. Mater Sci Eng A 383(2):191–200CrossRef Simchi A, Pohl H (2004) Direct laser sintering of iron–graphite powder mixture. Mater Sci Eng A 383(2):191–200CrossRef
58.
go back to reference Murali K, Chatterjee AN, Saha P et al (2003) Direct selective laser sintering of iron–graphite powder mixture. J Mater Process Technol 136(1–3):179–185CrossRef Murali K, Chatterjee AN, Saha P et al (2003) Direct selective laser sintering of iron–graphite powder mixture. J Mater Process Technol 136(1–3):179–185CrossRef
Metadata
Title
Introduction
Author
Prof. Dr. Dongdong Gu
Copyright Year
2015
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46089-4_1

Premium Partners