Skip to main content
Top
Published in:
Cover of the book

2016 | OriginalPaper | Chapter

1. Introduction

Author : Xiao-Sheng Zhang

Published in: Micro/Nano Integrated Fabrication Technology and Its Applications in Microenergy Harvesting

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter mainly reviews the development road map of micro-/nanointegrated fabrication technology as well as the previous research work of micro-/nanohierarchical structures. Consequently, the motivation, purpose, and innovative contributions of this thesis are briefly summarized.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Lakes, Materials with structural hierarchy. Nature 361, 511–515 (1993) R. Lakes, Materials with structural hierarchy. Nature 361, 511–515 (1993)
2.
go back to reference V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv. Mater. 20, 4049–4054 (2008) V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv. Mater. 20, 4049–4054 (2008)
3.
go back to reference H. Sai, K.W. Tan, K. Hur, E. Asenath-Smith, R. Hovden, Y. Jiang, M. Riccio, D.A. Muller, V. Elser, L.A. Estroff, S.M. Gruner, U. Wiesner, Hierarchical porous polymer scaffolds from block copolymers. Science 341, 530–534 (2013) H. Sai, K.W. Tan, K. Hur, E. Asenath-Smith, R. Hovden, Y. Jiang, M. Riccio, D.A. Muller, V. Elser, L.A. Estroff, S.M. Gruner, U. Wiesner, Hierarchical porous polymer scaffolds from block copolymers. Science 341, 530–534 (2013)
4.
go back to reference R. Blossey, Self-cleaning surfaces-virtual realities. Nat. Mater. 2, 301–306 (2003) R. Blossey, Self-cleaning surfaces-virtual realities. Nat. Mater. 2, 301–306 (2003)
5.
go back to reference H. Cho, J. Kim, H. Park, J.W. Bang, M.S. Hyun, Y. Bae, L. Ha, D.Y. Kim, S.M. Kang, T.J. Park, S. Seo, M. Choi, K.Y. Suh, Replication of flexible polymer membranes with geometry-controllable nano-apertures via a hierarchical mould-based dewetting. Nat. Commun. 5, 3137 (2014) H. Cho, J. Kim, H. Park, J.W. Bang, M.S. Hyun, Y. Bae, L. Ha, D.Y. Kim, S.M. Kang, T.J. Park, S. Seo, M. Choi, K.Y. Suh, Replication of flexible polymer membranes with geometry-controllable nano-apertures via a hierarchical mould-based dewetting. Nat. Commun. 5, 3137 (2014)
6.
go back to reference F. Xia, L. Jiang, Bio-inspired, smart, multiscale interfacial materials. Adv. Mater. 20, 2842–2858 (2008) F. Xia, L. Jiang, Bio-inspired, smart, multiscale interfacial materials. Adv. Mater. 20, 2842–2858 (2008)
7.
go back to reference W.R. Wei, M.L. Tsai, S.T. Ho, S.H. Tai, C.R. Ho, S.H. Tsai, C.W. Liu, R.J. Chung, J.H. He, Above-11 %-efficiency organic-inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon-trapping structures. Nano Lett. 13, 3658–3663 (2013) W.R. Wei, M.L. Tsai, S.T. Ho, S.H. Tai, C.R. Ho, S.H. Tsai, C.W. Liu, R.J. Chung, J.H. He, Above-11 %-efficiency organic-inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon-trapping structures. Nano Lett. 13, 3658–3663 (2013)
8.
go back to reference G.D. Bixler, B. Bhushan, Bioinspired rice leaf and butterfly wing surface structures combining sharkskin and lotus effects. Soft Matter. 8, 11271–11284 (2012) G.D. Bixler, B. Bhushan, Bioinspired rice leaf and butterfly wing surface structures combining sharkskin and lotus effects. Soft Matter. 8, 11271–11284 (2012)
9.
go back to reference Y.Y. Yan, N. Gao, W. Barthlott, Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces. Adv. Colloid Interface Sci. 169, 80–105 (2011) Y.Y. Yan, N. Gao, W. Barthlott, Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces. Adv. Colloid Interface Sci. 169, 80–105 (2011)
10.
go back to reference W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997) W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997)
11.
go back to reference Z. Guo, W. Liu, Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Plant Sci. 172, 1103–1112 (2007) Z. Guo, W. Liu, Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Plant Sci. 172, 1103–1112 (2007)
12.
go back to reference B. Bhushan, Y.C. Jung, K. Koch, Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos. Trans. Roy. Soc. A. 367, 1631–1672 (2009) B. Bhushan, Y.C. Jung, K. Koch, Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos. Trans. Roy. Soc. A. 367, 1631–1672 (2009)
13.
go back to reference Y. Zhang, Y. Chen, L. Shi, J. Li, and Z. Guo, Recent progress of double-structural and functional materials with special wettability. J. Mater. Chem. 22, 799–815 (2012) Y. Zhang, Y. Chen, L. Shi, J. Li, and Z. Guo, Recent progress of double-structural and functional materials with special wettability. J. Mater. Chem. 22, 799–815 (2012)
14.
go back to reference B. Bhushan, Y.C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1–108 (2011) B. Bhushan, Y.C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1–108 (2011)
15.
go back to reference D. Byun, J. Hong, Saputra, J.H. Ko, Y.J. Lee, H.C. Park, B.K. Byun, J.R. Lukes, Wetting characteristics of insect wing surfaces. J. Bionic Eng. 6, 63–70 (2009) D. Byun, J. Hong, Saputra, J.H. Ko, Y.J. Lee, H.C. Park, B.K. Byun, J.R. Lukes, Wetting characteristics of insect wing surfaces. J. Bionic Eng. 6, 63–70 (2009)
16.
go back to reference S.M. Lee, J. Üpping, A. Bielawny, and M. Knez, Structure-based color of natural petals discriminated by polymer replication. ACS Appl. Mater. Interfaces. 3, 30–34 (2011) S.M. Lee, J. Üpping, A. Bielawny, and M. Knez, Structure-based color of natural petals discriminated by polymer replication. ACS Appl. Mater. Interfaces. 3, 30–34 (2011)
17.
go back to reference K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, W.R. Hansen, S. Sponberg, T.W. Kenny, R. Fearing, J.N. Israelachvili, R.J. Full, Evidence for van der Waals adhesion in gecko setae. PNAS 99, 12252–12256 (2002) K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, W.R. Hansen, S. Sponberg, T.W. Kenny, R. Fearing, J.N. Israelachvili, R.J. Full, Evidence for van der Waals adhesion in gecko setae. PNAS 99, 12252–12256 (2002)
18.
go back to reference Y. Takezawa, H. Imai, Bottom-up synthesis of titanate nanosheets with hierarchical structures and a high specific surface area, Small 2, 390–393 (2006) Y. Takezawa, H. Imai, Bottom-up synthesis of titanate nanosheets with hierarchical structures and a high specific surface area, Small 2, 390–393 (2006)
19.
go back to reference H. Yang, X. Dou, Y. Fang, P. Jiang, Self-assembled biomimetic superhydrophobic hierarchical arrays. J. Colloid Interface Sci. 405, 51–57 (2013) H. Yang, X. Dou, Y. Fang, P. Jiang, Self-assembled biomimetic superhydrophobic hierarchical arrays. J. Colloid Interface Sci. 405, 51–57 (2013)
20.
go back to reference J. Liu, J. Zou, L. Zhai, Bottom-up assembly of poly(3-hexylthiophene)on carbon nanotubes: 2D building blocks fornanoscale circuits. Macromol. Rapid Commun. 30, 1387–1391 (2009) J. Liu, J. Zou, L. Zhai, Bottom-up assembly of poly(3-hexylthiophene)on carbon nanotubes: 2D building blocks fornanoscale circuits. Macromol. Rapid Commun. 30, 1387–1391 (2009)
21.
go back to reference J.S. Na, B. Gong, G. Scarel, G.N. Parsons, Surface polarity shielding and hierarchical ZnO nano-architectures produced using sequential hydrothermal crystal synthesis and thin film atomic layer deposition. ACS Nano 3, 3191–3199 (2009) J.S. Na, B. Gong, G. Scarel, G.N. Parsons, Surface polarity shielding and hierarchical ZnO nano-architectures produced using sequential hydrothermal crystal synthesis and thin film atomic layer deposition. ACS Nano 3, 3191–3199 (2009)
22.
go back to reference Q. Dong, H. Su, W. Cao, D. Zhang, Q. Guo, Y. Lai, Synthesis and characterizations of hierarchical biomorphic titania oxide by a bio-inspired bottom-up assembly solution technique. J. Solid State Chem. 180, 949–955 (2007) Q. Dong, H. Su, W. Cao, D. Zhang, Q. Guo, Y. Lai, Synthesis and characterizations of hierarchical biomorphic titania oxide by a bio-inspired bottom-up assembly solution technique. J. Solid State Chem. 180, 949–955 (2007)
23.
go back to reference J. Xiong, S.N. Das, B. Shin, J.P. Kar, J.H. Choi, J.M. Myoung, Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties. J. Colloid Interface Sci. 350, 344–347 (2010) J. Xiong, S.N. Das, B. Shin, J.P. Kar, J.H. Choi, J.M. Myoung, Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties. J. Colloid Interface Sci. 350, 344–347 (2010)
24.
go back to reference Y. Tian, C.F. Guo, Y. Guo, Q. Wang, Q. Liu, BiOCl nanowire with hierarchical structure and its Raman features. Appl. Surf. Sci. 258, 1949–1954 (2012) Y. Tian, C.F. Guo, Y. Guo, Q. Wang, Q. Liu, BiOCl nanowire with hierarchical structure and its Raman features. Appl. Surf. Sci. 258, 1949–1954 (2012)
25.
go back to reference Y. Rahmawan, K.R. Lee, M.W. Moon, K.Y. Suh, 3-D hierarchical wrinkled micro-pillars for anti-cells proliferation surface, in 6th IEEE Nanotechnology Materials and Devices Conference, pp. 416–419, Jeju, Korea, 18–21 Oct 2011 Y. Rahmawan, K.R. Lee, M.W. Moon, K.Y. Suh, 3-D hierarchical wrinkled micro-pillars for anti-cells proliferation surface, in 6th IEEE Nanotechnology Materials and Devices Conference, pp. 416–419, Jeju, Korea, 18–21 Oct 2011
26.
go back to reference G. Lu, L. Li, S. Li, Y. Qu, H. Tang, X. Yang, Constructing thin polythiophene film composed of aligned lamellae via controlled solvent vapor treatment. Langmuir. 25, 3763–3768 (2009) G. Lu, L. Li, S. Li, Y. Qu, H. Tang, X. Yang, Constructing thin polythiophene film composed of aligned lamellae via controlled solvent vapor treatment. Langmuir. 25, 3763–3768 (2009)
27.
go back to reference S. Tian, L. Li, W. Sun, X. Xia, D. Han, J. Li, C. Gu, Robust adhesion of flower-like few-layer graphene nanoclusters. Sci. Rep. 2, 551 (2012) S. Tian, L. Li, W. Sun, X. Xia, D. Han, J. Li, C. Gu, Robust adhesion of flower-like few-layer graphene nanoclusters. Sci. Rep. 2, 551 (2012)
28.
go back to reference K. Ijichi, A. Fukuoka, A. Shimojima, M. Sugiyama, T. Okubo, A combined top-down and bottom-up approach to fabricate silica films with bimodal porosity. Mater. Lett. 65, 828–831 (2011) K. Ijichi, A. Fukuoka, A. Shimojima, M. Sugiyama, T. Okubo, A combined top-down and bottom-up approach to fabricate silica films with bimodal porosity. Mater. Lett. 65, 828–831 (2011)
29.
go back to reference Y. Xiu, L. Zhu, D.W. Hess, C.P. Wong, Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity. Nano Lett. 7, 3388–3393 (2007) Y. Xiu, L. Zhu, D.W. Hess, C.P. Wong, Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity. Nano Lett. 7, 3388–3393 (2007)
30.
go back to reference F. Toor, H.M. Branz, M.R. Page, K.M. Jones, H.C. Yuan, Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells, Appl. Phys. Lett. 99, 103501 (2011) F. Toor, H.M. Branz, M.R. Page, K.M. Jones, H.C. Yuan, Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells, Appl. Phys. Lett. 99, 103501 (2011)
31.
go back to reference X. Li, B.K.T ay, P. Miele, A. Brioude, D. Cornu, Fabrication of silicon pyramid/nanowire binary structure with superhydrophobicity. Appl. Surf. Sci. 255, 7147–7152 (2009) X. Li, B.K.T ay, P. Miele, A. Brioude, D. Cornu, Fabrication of silicon pyramid/nanowire binary structure with superhydrophobicity. Appl. Surf. Sci. 255, 7147–7152 (2009)
32.
go back to reference J.P. Lee, S. Choi, S. Park, Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching. Langmuir. 27, 809–814 (2011) J.P. Lee, S. Choi, S. Park, Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching. Langmuir. 27, 809–814 (2011)
33.
go back to reference Y. He, C. Jiang, H. Yin, J. Chen, W. Yuan, Superhydrophobic silicon surfaces with micro-nano hierarchical structures via deep reactive ion etching and galvanic etching. J. Colloid Interface Sci. 364, 219–229 (2011) Y. He, C. Jiang, H. Yin, J. Chen, W. Yuan, Superhydrophobic silicon surfaces with micro-nano hierarchical structures via deep reactive ion etching and galvanic etching. J. Colloid Interface Sci. 364, 219–229 (2011)
34.
go back to reference W. Wang, D. Li, M. Tian, Y.C. Lee, R. Yang, Wafer-scale fabrication of silicon nanowire arrays with controllable dimensions. Appl. Surf. Sci. 258, 8649–8655 (2012) W. Wang, D. Li, M. Tian, Y.C. Lee, R. Yang, Wafer-scale fabrication of silicon nanowire arrays with controllable dimensions. Appl. Surf. Sci. 258, 8649–8655 (2012)
35.
go back to reference J. Liu, B. Liu, S. Liu, Z. Shen, C. Li, Y. Xia, A simple method to produce dual-scale silicon surfaces for solar cells. Surf. Coat. Technol. 229, 165–167 (2013) J. Liu, B. Liu, S. Liu, Z. Shen, C. Li, Y. Xia, A simple method to produce dual-scale silicon surfaces for solar cells. Surf. Coat. Technol. 229, 165–167 (2013)
36.
go back to reference Y. Kwon, N. Patankar, J. Choi, J. Lee, Design of surface hierarchy for extreme hydrophobicity. Langmuir 25, 6129–6136 (2009) Y. Kwon, N. Patankar, J. Choi, J. Lee, Design of surface hierarchy for extreme hydrophobicity. Langmuir 25, 6129–6136 (2009)
37.
go back to reference D. Zhang, F. Chen, G. Fang, Q. Yang, D. Xie, G. Qiao, W. Li, J. Si, X. Hou, Wetting characteristics on hierarchical structures patterned by a femtosecond laser. J. Micromech. Microeng. 20, 075029 (2010) D. Zhang, F. Chen, G. Fang, Q. Yang, D. Xie, G. Qiao, W. Li, J. Si, X. Hou, Wetting characteristics on hierarchical structures patterned by a femtosecond laser. J. Micromech. Microeng. 20, 075029 (2010)
38.
go back to reference J. Yoo, G. Yu, J. Yi, Large-areamulticrystallinesiliconsolarcellfabricationusingreactiveion etching(RIE). Solar Energy Mater. Solar Cells 95, 2–6 (2011) J. Yoo, G. Yu, J. Yi, Large-areamulticrystallinesiliconsolarcellfabricationusingreactiveion etching(RIE). Solar Energy Mater. Solar Cells 95, 2–6 (2011)
39.
go back to reference B. Cortese, S. D’Amone, M. Manca, I. Viola, R. Cingolani, G. Gigli, Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. Langmuir 24, 2712–2718 (2008) B. Cortese, S. D’Amone, M. Manca, I. Viola, R. Cingolani, G. Gigli, Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. Langmuir 24, 2712–2718 (2008)
40.
go back to reference Y.H. Huang, J.T. Wu, S.Y. Yang, Direct fabricating patterns using stamping transfer process with PDMS mold of hydrophobic nanostructures on surface of micro-cavity. Microelectron. Eng. 88, 849–854 (2011) Y.H. Huang, J.T. Wu, S.Y. Yang, Direct fabricating patterns using stamping transfer process with PDMS mold of hydrophobic nanostructures on surface of micro-cavity. Microelectron. Eng. 88, 849–854 (2011)
41.
go back to reference D.S. Kim, B.K. Lee, J. Yeo, M.J. Choi, W. Yang, T.H. Kwon, Fabrication of PDMS micro/nano hybrid surface for increasing hydrophobicity. Microelectron. Eng. 86, 1375–1378 (2009) D.S. Kim, B.K. Lee, J. Yeo, M.J. Choi, W. Yang, T.H. Kwon, Fabrication of PDMS micro/nano hybrid surface for increasing hydrophobicity. Microelectron. Eng. 86, 1375–1378 (2009)
42.
go back to reference Y. Yoon, D.W. Lee, J.H. Ahn, J. Sohn, J.B. Lee, One-step fabrication of optically transparent polydimethylsiloxane artificial lotus leaf film using under-exposed under-baked photoresist mold, in 25th IEEE International Conference on Micro Electro Mechanical Systems, pp. 301–304, Paris, France, 29 Jan–2 Feb 2012 Y. Yoon, D.W. Lee, J.H. Ahn, J. Sohn, J.B. Lee, One-step fabrication of optically transparent polydimethylsiloxane artificial lotus leaf film using under-exposed under-baked photoresist mold, in 25th IEEE International Conference on Micro Electro Mechanical Systems, pp. 301–304, Paris, France, 29 Jan–2 Feb 2012
43.
go back to reference Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7, 9533–9557 (2013) Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7, 9533–9557 (2013)
44.
go back to reference Z.L. Wang, Nanogenerators for Self-powered Devices and Systems (Georgia Institute of Technology, Atlanta, 2011) Z.L. Wang, Nanogenerators for Self-powered Devices and Systems (Georgia Institute of Technology, Atlanta, 2011)
45.
go back to reference Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006) Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)
46.
go back to reference Z.L. Wang, W. Wu, Piezotronics and piezo-phototronics-fundamentals and applications. Nat. Sci. Rev. 1, 62–90 (2014) Z.L. Wang, W. Wu, Piezotronics and piezo-phototronics-fundamentals and applications. Nat. Sci. Rev. 1, 62–90 (2014)
47.
go back to reference Z.L. Wang, W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 51, 11700–11721 (2012) Z.L. Wang, W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 51, 11700–11721 (2012)
48.
go back to reference X. Wang, J. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007)CrossRef X. Wang, J. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007)CrossRef
49.
go back to reference S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang, Self-powered nanowire devices. Nat. Nanotechnol. 5, 366–373 (2010)CrossRef S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang, Self-powered nanowire devices. Nat. Nanotechnol. 5, 366–373 (2010)CrossRef
50.
go back to reference R. Yang, Y. Qin, C. Li, G. Zhu, Z.L. Wang, Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9, 1201–1205 (2009)CrossRef R. Yang, Y. Qin, C. Li, G. Zhu, Z.L. Wang, Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9, 1201–1205 (2009)CrossRef
51.
go back to reference Y. Hu, Y. Zhang, C. Xu, G. Zhu, Z.L. Wang, High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett. 10, 5025–5031 (2010)CrossRef Y. Hu, Y. Zhang, C. Xu, G. Zhu, Z.L. Wang, High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett. 10, 5025–5031 (2010)CrossRef
52.
go back to reference Y. Qin, X. Wang, Z.L. Wang, Microfibre-nanowire hybrid structure for energy scavenging. Nature 451, 809–813 (2008)CrossRef Y. Qin, X. Wang, Z.L. Wang, Microfibre-nanowire hybrid structure for energy scavenging. Nature 451, 809–813 (2008)CrossRef
53.
go back to reference C. Chang, V.H. Tran, J. Wang, Y.K. Fuh, L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)CrossRef C. Chang, V.H. Tran, J. Wang, Y.K. Fuh, L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)CrossRef
54.
go back to reference C. Xu, Z.L. Wang, Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy. Adv. Mater. 23, 873–877 (2011)CrossRef C. Xu, Z.L. Wang, Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy. Adv. Mater. 23, 873–877 (2011)CrossRef
55.
go back to reference F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012)CrossRef F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012)CrossRef
56.
go back to reference G. Zhu, C. Pan, W. Guo, C.Y. Chen, Y. Zhou, R. Yu, Z.L. Wang, Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12, 4960–4965 (2012)CrossRef G. Zhu, C. Pan, W. Guo, C.Y. Chen, Y. Zhou, R. Yu, Z.L. Wang, Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12, 4960–4965 (2012)CrossRef
57.
go back to reference F.R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z.L. Wang, Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12, 3109–3114 (2012)CrossRef F.R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z.L. Wang, Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12, 3109–3114 (2012)CrossRef
58.
go back to reference S. Wang, L. Lin, Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12, 6339–6346 (2012)CrossRef S. Wang, L. Lin, Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12, 6339–6346 (2012)CrossRef
59.
go back to reference A.F. Diaza, R.M. Felix-Navarro, A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J. Electrostat. 62, 277–290 (2004)CrossRef A.F. Diaza, R.M. Felix-Navarro, A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J. Electrostat. 62, 277–290 (2004)CrossRef
60.
go back to reference P. Bai, G. Zhu, Y. Liu, J. Chen, Q. Jing, W. Yang, J. Ma, G. Zhang, Z.L. Wang, Cylindrical rotating triboelectric nanogenerator. ACS Nano 7, 6361–6366 (2013)CrossRef P. Bai, G. Zhu, Y. Liu, J. Chen, Q. Jing, W. Yang, J. Ma, G. Zhang, Z.L. Wang, Cylindrical rotating triboelectric nanogenerator. ACS Nano 7, 6361–6366 (2013)CrossRef
61.
go back to reference L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu, Y. Hu, Z.L. Wang, Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 13, 2916–2923 (2013)CrossRef L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu, Y. Hu, Z.L. Wang, Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 13, 2916–2923 (2013)CrossRef
62.
go back to reference Y. Yang, H. Zhang, Y. Liu, Z.H. Lin, S. Lee, Z. Lin, C.P. Wong, Z.L. Wang, Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics. ACS Nano 7, 2808–2813 (2013)CrossRef Y. Yang, H. Zhang, Y. Liu, Z.H. Lin, S. Lee, Z. Lin, C.P. Wong, Z.L. Wang, Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics. ACS Nano 7, 2808–2813 (2013)CrossRef
63.
go back to reference Y. Yang, H. Zhang, J. Chen, S. Lee, T.C. Hou, Z.L. Wang, Simultaneously harvesting mechanical and chemicalenergies by a hybrid cell for self-powered biosensors and personal electronics. Energy Environ. Sci. 6, 1744–1749 (2013)CrossRef Y. Yang, H. Zhang, J. Chen, S. Lee, T.C. Hou, Z.L. Wang, Simultaneously harvesting mechanical and chemicalenergies by a hybrid cell for self-powered biosensors and personal electronics. Energy Environ. Sci. 6, 1744–1749 (2013)CrossRef
64.
go back to reference S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, Z.L. Wang, Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 13, 2226–2233 (2013)CrossRef S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, Z.L. Wang, Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 13, 2226–2233 (2013)CrossRef
65.
go back to reference G. Zhu, J. Chen, T. Zhang, Q. Jing, Z.L. Wang, Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5, 3426 (2014) G. Zhu, J. Chen, T. Zhang, Q. Jing, Z.L. Wang, Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5, 3426 (2014)
Metadata
Title
Introduction
Author
Xiao-Sheng Zhang
Copyright Year
2016
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-48816-4_1