Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2016

02-05-2016

Inverse Thermal Analysis of Steel Welds Using Solidification-Boundary Constraints

Author: S. G. Lambrakos

Published in: Journal of Materials Engineering and Performance | Issue 6/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Inverse thermal analyses of structural steel deep-penetration welds are presented. These analyses employ a methodology that is in terms of numerical-analytical basis functions and constraint conditions for inverse thermal analysis of steady-state energy deposition in plate structures. These analyses provide parametric representations of weld temperature histories that can be adopted as input data to various types of computational procedures, such as those for prediction of solid-state phase transformations and mechanical response. In addition, these parameterized temperature histories can be used for inverse thermal analysis of welds corresponding to other welding processes whose process conditions are within similar regimes. The present study applies an inverse thermal analysis procedure that uses three-dimensional constraint conditions whose two-dimensional projections are mapped within transverse cross sections of experimentally measured solidification boundaries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference O. Grong, Materials modelling series, Metallurgical Modelling of Welding, Vol 2, 2nd ed., H.K.D.H. Bhadeshia, Ed., The Institute of Materials, London, 1997, p 1–115 O. Grong, Materials modelling series, Metallurgical Modelling of Welding, Vol 2, 2nd ed., H.K.D.H. Bhadeshia, Ed., The Institute of Materials, London, 1997, p 1–115
3.
go back to reference S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Series in Computational Methods in Mechanics and Thermal Sciences, Hemisphere Publishing Corporation, London, 1980 S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Series in Computational Methods in Mechanics and Thermal Sciences, Hemisphere Publishing Corporation, London, 1980
4.
go back to reference W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in Fortran 77, The Art of Scientific Computing, 2nd ed., Volume 1 of Fortran Numerical Recipes Cambridge University Press, New York, 1997 W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in Fortran 77, The Art of Scientific Computing, 2nd ed., Volume 1 of Fortran Numerical Recipes Cambridge University Press, New York, 1997
5.
go back to reference A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, 2005CrossRef A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, 2005CrossRef
6.
go back to reference C.R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002CrossRef C.R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002CrossRef
7.
go back to reference G. Ramm, Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering, Springer, New York, 2005 G. Ramm, Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering, Springer, New York, 2005
8.
go back to reference J.V. Beck, B. Blackwell, and C.R. St, Clair, Inverse Heat Conduction: III-Posed Problems, Wiley Interscience, New York, 1995 J.V. Beck, B. Blackwell, and C.R. St, Clair, Inverse Heat Conduction: III-Posed Problems, Wiley Interscience, New York, 1995
9.
10.
go back to reference M.N. Ozisik and H.R.B. Orlande, Inverse Heat Transfer, Fundamentals and Applications, Taylor and Francis, New York, 2000 M.N. Ozisik and H.R.B. Orlande, Inverse Heat Transfer, Fundamentals and Applications, Taylor and Francis, New York, 2000
11.
go back to reference K. Kurpisz and A.J. Nowak, Inverse Thermal Problems, Computational Mechanics Publications, Boston, 1995 K. Kurpisz and A.J. Nowak, Inverse Thermal Problems, Computational Mechanics Publications, Boston, 1995
12.
go back to reference J.V. Beck, Inverse problems in heat transfer with application to solidification and welding, Modeling of Casting, Welding and Advanced Solidification Processes, V.M. Rappaz, M.R. Ozgu, and K.W. Mahin, Ed., The Minerals, Metals and Materials Society, Warrendale, 1991, p 427–437 J.V. Beck, Inverse problems in heat transfer with application to solidification and welding, Modeling of Casting, Welding and Advanced Solidification Processes, V.M. Rappaz, M.R. Ozgu, and K.W. Mahin, Ed., The Minerals, Metals and Materials Society, Warrendale, 1991, p 427–437
13.
go back to reference J.V. Beck, Inverse Problems in Heat Transfer, Mathematics of Heat Transfer, G.E. Tupholme and A.S. Wood, Ed., Clarendon Press, Oxford, 1998, p 13–24 J.V. Beck, Inverse Problems in Heat Transfer, Mathematics of Heat Transfer, G.E. Tupholme and A.S. Wood, Ed., Clarendon Press, Oxford, 1998, p 13–24
14.
go back to reference A.N. Tikhonov, Inverse Problems in Heat Conduction, J. Eng. Phys., 1975, 29(1), p 816–820CrossRef A.N. Tikhonov, Inverse Problems in Heat Conduction, J. Eng. Phys., 1975, 29(1), p 816–820CrossRef
15.
go back to reference O.M. Alifanov, Solution of an Inverse Problem of Heat-Conduction by Iterative Methods, J. Eng. Phys., 1974, 26(4), p 471–476CrossRef O.M. Alifanov, Solution of an Inverse Problem of Heat-Conduction by Iterative Methods, J. Eng. Phys., 1974, 26(4), p 471–476CrossRef
16.
go back to reference O.M. Alifanov and V.Y. Mikhailov, Solution of the Overdetermined Inverse Problem of Thermal Conductivity Involving Inaccurate Data, High Temp., 1985, 23(1), p 112–117 O.M. Alifanov and V.Y. Mikhailov, Solution of the Overdetermined Inverse Problem of Thermal Conductivity Involving Inaccurate Data, High Temp., 1985, 23(1), p 112–117
17.
go back to reference E.A. Artyukhin and A.V. Nenarokomov, Coefficient Inverse Heat Conduction Problem, J. Eng. Phys., 1988, 53, p 1085–1090CrossRef E.A. Artyukhin and A.V. Nenarokomov, Coefficient Inverse Heat Conduction Problem, J. Eng. Phys., 1988, 53, p 1085–1090CrossRef
18.
go back to reference T.J. Martin and G.S. Dulikravich, Inverse Determination of Steady Convective Local Heat Transfer Coefficients, ASME J. Heat Transfer, 1998, 120, p 328–334CrossRef T.J. Martin and G.S. Dulikravich, Inverse Determination of Steady Convective Local Heat Transfer Coefficients, ASME J. Heat Transfer, 1998, 120, p 328–334CrossRef
19.
go back to reference S.G. Lambrakos and S.G. Michopoulos, Algorithms for Inverse Analysis of Heat Deposition Processes, ‘Mathematical Modelling of Weld Phenomena, Vol 8, Verlag der Technischen Universite Graz, Graz, 2007, p 847 S.G. Lambrakos and S.G. Michopoulos, Algorithms for Inverse Analysis of Heat Deposition Processes, ‘Mathematical Modelling of Weld Phenomena, Vol 8, Verlag der Technischen Universite Graz, Graz, 2007, p 847
20.
go back to reference S.W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, California Technical Publishing, San Diego, 1997 S.W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, California Technical Publishing, San Diego, 1997
21.
go back to reference H.S. Carslaw and J.C. Jaegar, Conduction of Heat in Solids, 2nd ed., Clarendon Press, Oxford, 1959, p 374 H.S. Carslaw and J.C. Jaegar, Conduction of Heat in Solids, 2nd ed., Clarendon Press, Oxford, 1959, p 374
22.
go back to reference R.W. Farebrother, Linear-Least-Square Computations, Marcel Dekker, New York, 1988 R.W. Farebrother, Linear-Least-Square Computations, Marcel Dekker, New York, 1988
23.
go back to reference Y.B. Bard, Nonlinear Parameter Estimation, Academic Press, New York, 1974 Y.B. Bard, Nonlinear Parameter Estimation, Academic Press, New York, 1974
24.
go back to reference S.G. Lambrakos and J.O. Milewski, Analysis of Welding and Heat Deposition Processes using an Inverse-Problem Approach, Mathematical Modelling of Weld Phenomena, Vol 7, Verlag der Technischen Universite Graz, Graz, 2005, p 1025–1055 S.G. Lambrakos and J.O. Milewski, Analysis of Welding and Heat Deposition Processes using an Inverse-Problem Approach, Mathematical Modelling of Weld Phenomena, Vol 7, Verlag der Technischen Universite Graz, Graz, 2005, p 1025–1055
25.
go back to reference S.G. Lambrakos, Inverse Thermal Analysis of 304L Stainless Steel Laser Welds, J. Mater. Eng. And Perform., 2013, 22(8), p 2141 S.G. Lambrakos, Inverse Thermal Analysis of 304L Stainless Steel Laser Welds, J. Mater. Eng. And Perform., 2013, 22(8), p 2141
27.
go back to reference S.G. Lambrakos, Inverse Thermal Analysis of Welds Using Multiple Constraints and Relaxed Parameter Optimization, J. Mater. Eng. Perform., 2015, 24(8), p 2925–2936CrossRef S.G. Lambrakos, Inverse Thermal Analysis of Welds Using Multiple Constraints and Relaxed Parameter Optimization, J. Mater. Eng. Perform., 2015, 24(8), p 2925–2936CrossRef
28.
29.
go back to reference S.G. Lambrakos, A. Shabaev, Temperature Histories of Ti-6Al-4V Pulsed-Mode Laser Welds Calculated Using Multiple Constraints, Naval Research Laboratory Memorandum Report, Naval Research Laboratory, Washington, NRL/MR/6390–15-9621 (2015). S.G. Lambrakos, A. Shabaev, Temperature Histories of Ti-6Al-4V Pulsed-Mode Laser Welds Calculated Using Multiple Constraints, Naval Research Laboratory Memorandum Report, Naval Research Laboratory, Washington, NRL/MR/6390–15-9621 (2015).
30.
go back to reference D. Rosenthal, The Theory of Moving Sources of Heat and Its Application to Metal Treatments, Trans. ASME, 1946, 68, p 849–866 D. Rosenthal, The Theory of Moving Sources of Heat and Its Application to Metal Treatments, Trans. ASME, 1946, 68, p 849–866
31.
go back to reference J. Goldak, A. Chakravarti, and M. Bibby, A New Finite Element Model for Welding Heat Source, Metall. Trans. B, 1984, 15, p 299–305CrossRef J. Goldak, A. Chakravarti, and M. Bibby, A New Finite Element Model for Welding Heat Source, Metall. Trans. B, 1984, 15, p 299–305CrossRef
32.
go back to reference R.O. Myhr and O. Grong, Dimensionless Maps for Heat Flow Analyses in Fusion Welding, Acta Metall. Mater., 1990, 38, p 449–460CrossRef R.O. Myhr and O. Grong, Dimensionless Maps for Heat Flow Analyses in Fusion Welding, Acta Metall. Mater., 1990, 38, p 449–460CrossRef
33.
go back to reference R.C. Reed and H.K.D.H. Bhadeshia, A Simple Model For Multipass Welds, Acta Metall. Mater., 1994, 42(11), p 3663–3678CrossRef R.C. Reed and H.K.D.H. Bhadeshia, A Simple Model For Multipass Welds, Acta Metall. Mater., 1994, 42(11), p 3663–3678CrossRef
34.
go back to reference V.A. Karkhin, P.N. Homich, and V.G. Michailov, Models for Volume Heat Sources and Functional-Analytic Technique for Calculating the Temperature Fields in Butt Welding, ‘Mathematical Modelling of Weld Phenomena, Vol 8, Verlag der Technischen Universite Graz, Graz, 2007, p 847 V.A. Karkhin, P.N. Homich, and V.G. Michailov, Models for Volume Heat Sources and Functional-Analytic Technique for Calculating the Temperature Fields in Butt Welding, ‘Mathematical Modelling of Weld Phenomena, Vol 8, Verlag der Technischen Universite Graz, Graz, 2007, p 847
35.
go back to reference A.A. Deshpande, A. Short, W. Sun, D.G. McCartney, L. Xu, and T.H. Hyde, Finite-Element Analysis of Experimentally Identified Parametric Envelopes for Stable Kethole Plasma Arc Welding of a Titanium Alloy, J. Strain Anal. Eng. Des., 2012, 47(5), p 266–275CrossRef A.A. Deshpande, A. Short, W. Sun, D.G. McCartney, L. Xu, and T.H. Hyde, Finite-Element Analysis of Experimentally Identified Parametric Envelopes for Stable Kethole Plasma Arc Welding of a Titanium Alloy, J. Strain Anal. Eng. Des., 2012, 47(5), p 266–275CrossRef
36.
go back to reference I.S. Leoveanu, G. Zgura, and D. Birsan, Modeling the Heat and Fluid Flow in the Welded Pool, Bull. Trans. Univ. Brasov, 2007, 3, p 363–368 I.S. Leoveanu, G. Zgura, and D. Birsan, Modeling the Heat and Fluid Flow in the Welded Pool, Bull. Trans. Univ. Brasov, 2007, 3, p 363–368
37.
go back to reference I.S. Leoveanu, G. Zgura, Modelling the Heat and Fluid Flow in the Welded Pool from High Power Arc Sources, Materials Science Forum, eds. by C. Lee, J-B. Lee, D-H. Park, S-J. Na, vol. 580-582, pp. 443-446, 2008. I.S. Leoveanu, G. Zgura, Modelling the Heat and Fluid Flow in the Welded Pool from High Power Arc Sources, Materials Science Forum, eds. by C. Lee, J-B. Lee, D-H. Park, S-J. Na, vol. 580-582, pp. 443-446, 2008.
38.
go back to reference E.W. Reutzel, S.M. Kelly, R.P. Martukanitz, M.M. Bugarewicz, P. Michaleris, Laser-GMA Hybrid Welding: Process Monitoring and Thermal Modeling, Trends in Welding Research, Proceedings of the 7th International Conference, eds. by S.A. David, T. DebRoy, J.C. Lippold, H.B. Smartt, J.M. Vitek (ASM International, 2006), pp. 143-148 E.W. Reutzel, S.M. Kelly, R.P. Martukanitz, M.M. Bugarewicz, P. Michaleris, Laser-GMA Hybrid Welding: Process Monitoring and Thermal Modeling, Trends in Welding Research, Proceedings of the 7th International Conference, eds. by S.A. David, T. DebRoy, J.C. Lippold, H.B. Smartt, J.M. Vitek (ASM International, 2006), pp. 143-148
39.
go back to reference B.D. Ribic, R. Rai, T.A. Palmer, T. DebRoy, Arc-Laser Interactions and Heat Transfer and Fluid Flow in Hybrid Welding, Trends in Welding Research, Proceedings of the 8th International Conference, eds. by S.A. David, T. DebRoy, J.N. DuPont, T. Koseki, H.B. Smartt, (ASM International, 2009), pp. 313-320 B.D. Ribic, R. Rai, T.A. Palmer, T. DebRoy, Arc-Laser Interactions and Heat Transfer and Fluid Flow in Hybrid Welding, Trends in Welding Research, Proceedings of the 8th International Conference, eds. by S.A. David, T. DebRoy, J.N. DuPont, T. Koseki, H.B. Smartt, (ASM International, 2009), pp. 313-320
40.
go back to reference E.A. Metzbower, D.W. Moon, C.R. Feng, S.G. Lambrakos, and R.J. Wong, “Modelling of HSLA-65 GMAW Welds, Mathematical Modelling of Weld Phenomena, 7, Published by Verlag der Technischen Universite Graz, Graz, 2005, p 327–339 E.A. Metzbower, D.W. Moon, C.R. Feng, S.G. Lambrakos, and R.J. Wong, “Modelling of HSLA-65 GMAW Welds, Mathematical Modelling of Weld Phenomena, 7, Published by Verlag der Technischen Universite Graz, Graz, 2005, p 327–339
Metadata
Title
Inverse Thermal Analysis of Steel Welds Using Solidification-Boundary Constraints
Author
S. G. Lambrakos
Publication date
02-05-2016
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2016
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2084-6

Other articles of this Issue 6/2016

Journal of Materials Engineering and Performance 6/2016 Go to the issue

Premium Partners