Skip to main content
Top
Published in:

25-05-2024

Investigating the Influence of Scene Video on EEG-Based Evaluation of Interior Sound in Passenger Cars

Authors: Liping Xie, Zhien Liu, Yi Sun, Yawei Zhu

Published in: Cognitive Computation | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The evaluation of automobile sound quality is an important research topic in the interior sound design of passenger car, and the accurate and effective evaluation methods are required for the determination of the acoustic targets in automobile development. However, there are some deficiencies in the existing evaluation studies of automobile sound quality. (1) Most of subjective evaluations only considered the auditory perception, which is easy to be achieved but does not fully reflect the impacts of sound on participants; (2) similarly, most of the existing subjective evaluations only considered the inherent properties of sounds, such as physical and psychoacoustic parameters, which make it difficult to reflect the complex relationship between the sound and the subjective perception of the evaluators; (3) the construction of evaluation models only from physical and psychoacoustic perspectives does not provide a comprehensive analysis of the real subjective emotions of the participants. Therefore, to alleviate the above flaws, the auditory and visual perceptions are combined to explore the inference of scene video on the evaluation of sound quality, and the EEG signal is introduced as a physiological acoustic index to evaluate the sound quality; simultaneously, an Elman neural network model is constructed to predict the powerful sound quality combined with the proposed indexes of physical acoustics, psychoacoustics, and physiological acoustics. The results show that evaluation results of sound quality combined with scene videos better reflect the subjective perceptions of participants. The proposed objective evaluation indexes of physical, psychoacoustic, and physiological acoustic contribute to mapping the subjective results of the powerful sound quality, and the constructed Elman model outperforms the traditional back propagation (BP) and support vector machine (SVM) models. The analysis method proposed in this paper can be better applied in the field of automotive sound design, providing a clear guideline for the evaluation and optimization of automotive sound quality in the future.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tan ZF, Tan GP. Evaluation method of vehicle sound Quality[J]. Volume 178–181. Appl Mech Mater. 2012. pp. 2829–33. Tan ZF, Tan GP. Evaluation method of vehicle sound Quality[J]. Volume 178–181. Appl Mech Mater. 2012. pp. 2829–33.
5.
go back to reference McGurk H, MacDonald J. Hearing lips and seeing voices[J]. Nature. 1976;264 5588:746–8.CrossRef McGurk H, MacDonald J. Hearing lips and seeing voices[J]. Nature. 1976;264 5588:746–8.CrossRef
6.
7.
go back to reference Bajoulvand A, Marandi RZ, Daliri MR, et al. Analysis of folk music preference of people from different ethnic groups using kernel-based methods on EEG signals[J]. Appl Math Comput. 2017;307:62–70. Bajoulvand A, Marandi RZ, Daliri MR, et al. Analysis of folk music preference of people from different ethnic groups using kernel-based methods on EEG signals[J]. Appl Math Comput. 2017;307:62–70.
8.
go back to reference Bhatti AM, Majid M, Anwar SM, et al. Human emotion recognition and analysis in response to audio music using brain signals[J]. Comput Hum Behav. 2016;65(5):267–75.CrossRef Bhatti AM, Majid M, Anwar SM, et al. Human emotion recognition and analysis in response to audio music using brain signals[J]. Comput Hum Behav. 2016;65(5):267–75.CrossRef
9.
go back to reference Menzel D, Haufe N, Fastl H. Colour-influences on loudness judgements[C]//Proc. 20th Intern. Congress on Acoustics, Proc. Int. Congress on Acoustics ICA (2010), Sydney, Australia; 2010. Menzel D, Haufe N, Fastl H. Colour-influences on loudness judgements[C]//Proc. 20th Intern. Congress on Acoustics, Proc. Int. Congress on Acoustics ICA (2010), Sydney, Australia; 2010.
11.
go back to reference Mehta K, Kliewer J. An Information Theoretic Approach toward assessing Perceptual Audio Quality using EEG[J]. IEEE Trans Mol Biol Multi Scale Commun. 2015;1(2):176–87.CrossRef Mehta K, Kliewer J. An Information Theoretic Approach toward assessing Perceptual Audio Quality using EEG[J]. IEEE Trans Mol Biol Multi Scale Commun. 2015;1(2):176–87.CrossRef
12.
go back to reference Mehta K, Kliewer J. Assessing subjective perception of audio quality by measuring the information flow on the brain-response channel. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy; 2014, pp. 5884–88. https://doi.org/10.1109/ICASSP.2014.6854732. Mehta K, Kliewer J. Assessing subjective perception of audio quality by measuring the information flow on the brain-response channel. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy; 2014, pp. 5884–88. https://​doi.​org/​10.​1109/​ICASSP.​2014.​6854732.
16.
go back to reference Bleichner MG, Mirkovic B, Debener S. Identifying auditory attention with ear-EEG: cEEGrid versus high-density cap-EEG comparison[J]. J Neural Eng. 2016;13(6):066004.CrossRef Bleichner MG, Mirkovic B, Debener S. Identifying auditory attention with ear-EEG: cEEGrid versus high-density cap-EEG comparison[J]. J Neural Eng. 2016;13(6):066004.CrossRef
17.
go back to reference Lee SM, Lee SK. Objective evaluation of human perception of automotive sound based on physiological signal of human brain[J]. Int J Autom Technol. 2014;15(2):273–82.CrossRef Lee SM, Lee SK. Objective evaluation of human perception of automotive sound based on physiological signal of human brain[J]. Int J Autom Technol. 2014;15(2):273–82.CrossRef
18.
go back to reference Xu Z, Ni G, Han S, Zheng Q, Ming D. Pilot Study on Objective Evaluation of Human Auditory Ability using Hybrid EEG and FNIRS Acquisition. 2019 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), Tianjin, China; 2019, pp. 1–5. https://doi.org/10.1109/CIVEMSA45640.2019.9071629. Xu Z, Ni G, Han S, Zheng Q, Ming D. Pilot Study on Objective Evaluation of Human Auditory Ability using Hybrid EEG and FNIRS Acquisition. 2019 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), Tianjin, China; 2019, pp. 1–5. https://​doi.​org/​10.​1109/​CIVEMSA45640.​2019.​9071629.
19.
go back to reference Lee YJ, Shin TJ, Lee SK. Sound quality analysis of a passenger car based on electroencephalography[J]. J Mech Sci Technol. 2013;27:319–25. Lee YJ, Shin TJ, Lee SK. Sound quality analysis of a passenger car based on electroencephalography[J]. J Mech Sci Technol. 2013;27:319–25.
20.
go back to reference Yuan-Pin, Lin C-H, et al. EEG-Based emotion recognition in Music Listening[J]. IEEE Trans Biomed Eng. 2010. Yuan-Pin, Lin C-H, et al. EEG-Based emotion recognition in Music Listening[J]. IEEE Trans Biomed Eng. 2010.
21.
go back to reference Lin YP, Wang CH, Jung TP, et al. EEG-based emotion recognition in music listening[J]. IEEE Trans Biomed Eng. 2010;57(7):1798–806. Lin YP, Wang CH, Jung TP, et al. EEG-based emotion recognition in music listening[J]. IEEE Trans Biomed Eng. 2010;57(7):1798–806.
22.
go back to reference Khotimah SN, Suwandi GRF, Handayani N, et al. Characterization of the changes in electroencephalogram power spectra due to sound stimulation[C]//. J Phys Conf Ser. IOP Publishing. 2019;1248(1):012022. Khotimah SN, Suwandi GRF, Handayani N, et al. Characterization of the changes in electroencephalogram power spectra due to sound stimulation[C]//. J Phys Conf Ser. IOP Publishing. 2019;1248(1):012022.
23.
go back to reference Busse L, Roberts KC, Crist RE, et al. The spread of attention across modalities and space in a multisensory object[J]. Proc Natl Acad Sci. 2005;102(51):18751–56. Busse L, Roberts KC, Crist RE, et al. The spread of attention across modalities and space in a multisensory object[J]. Proc Natl Acad Sci. 2005;102(51):18751–56.
24.
go back to reference Viollon S, Lavandier C, Duval R. Development of an experimental procedure suitable to test audio-visual interactions in the complex urban sound environments[C]//Euro-noise. 1998;98: 1095–100. Viollon S, Lavandier C, Duval R. Development of an experimental procedure suitable to test audio-visual interactions in the complex urban sound environments[C]//Euro-noise. 1998;98: 1095–100.
25.
go back to reference Viollon S, Lavandier C, Drake C. Influence of visual setting on sound ratings in an urban environment[J]. Appl Acoust. 2002;63(5):493–511.CrossRef Viollon S, Lavandier C, Drake C. Influence of visual setting on sound ratings in an urban environment[J]. Appl Acoust. 2002;63(5):493–511.CrossRef
26.
go back to reference Hashimoto T, Hatano S. Effects of factors other than sound to the perception of sound quality[J]. 17th ICA Rome, CD-ROM;2001. Hashimoto T, Hatano S. Effects of factors other than sound to the perception of sound quality[J]. 17th ICA Rome, CD-ROM;2001.
27.
go back to reference Namba S, Kuwano S, Kinoshita A, et al. Psychological evaluation of noise in passenger cars—the effect of visual monitoring and the measurement of habituation[J]. J Sound Vib. 1997;205 4:427–33.CrossRef Namba S, Kuwano S, Kinoshita A, et al. Psychological evaluation of noise in passenger cars—the effect of visual monitoring and the measurement of habituation[J]. J Sound Vib. 1997;205 4:427–33.CrossRef
28.
go back to reference Zhao L, Zheng S, Lian X, et al. Influences of scene video on the sound quality evaluation of vehicle noise. [J] Automot Eng. 2013;035(006):538–42. Zhao L, Zheng S, Lian X, et al. Influences of scene video on the sound quality evaluation of vehicle noise. [J] Automot Eng. 2013;035(006):538–42.
29.
go back to reference Xie L, Lu C, Liu Z, et al. Study of Auditory Brain Cognition laws-based Recognition Method of Automobile Sound Quality[J]. Front Hum Neurosci. 2021;15:663049.CrossRef Xie L, Lu C, Liu Z, et al. Study of Auditory Brain Cognition laws-based Recognition Method of Automobile Sound Quality[J]. Front Hum Neurosci. 2021;15:663049.CrossRef
30.
go back to reference Xie L, Lu C, Liu Z, et al. Studying critical frequency bands and channels for EEG-based automobile sound recognition with machine learning[J]. Appl Acoust. 2022;185:108389.CrossRef Xie L, Lu C, Liu Z, et al. Studying critical frequency bands and channels for EEG-based automobile sound recognition with machine learning[J]. Appl Acoust. 2022;185:108389.CrossRef
31.
go back to reference Dey L, Mukhopadhyay A. Compact Genetic Algorithm-based feature selection for sequence-based prediction of dengue-human protein interactions[J]. IEEE/ACM Trans Comput Biol Bioinf. 2021;19(4):2137–48. Dey L, Mukhopadhyay A. Compact Genetic Algorithm-based feature selection for sequence-based prediction of dengue-human protein interactions[J]. IEEE/ACM Trans Comput Biol Bioinf. 2021;19(4):2137–48.
32.
go back to reference Conneau AC, Essid S. Assessment of new spectral features for eeg-based emotion recognition. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence; 2014, pp. 4698–702. Conneau AC, Essid S. Assessment of new spectral features for eeg-based emotion recognition. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence; 2014, pp. 4698–702.
33.
go back to reference Hadjidimitriou SK, Hadjileontiadis LJ. Toward an EEG-based recognition of music liking using time-frequency analysis. IEEE Trans Biomed Eng. 2012;59:3498–510.CrossRef Hadjidimitriou SK, Hadjileontiadis LJ. Toward an EEG-based recognition of music liking using time-frequency analysis. IEEE Trans Biomed Eng. 2012;59:3498–510.CrossRef
34.
go back to reference Yoon JH, Yang IH, Jeong JE, et al. Reliability improvement of a sound quality index for a vehicle HVAC system using a regression and neural network model[J]. Appl Acoust. 2012;73(11):1099–103.CrossRef Yoon JH, Yang IH, Jeong JE, et al. Reliability improvement of a sound quality index for a vehicle HVAC system using a regression and neural network model[J]. Appl Acoust. 2012;73(11):1099–103.CrossRef
35.
go back to reference Moon SE, Lee JS. Implicit Analysis of Perceptual Multimedia Experience based on physiological response: a Review[J]. IEEE Trans Multimed. 2016:340–53. Moon SE, Lee JS. Implicit Analysis of Perceptual Multimedia Experience based on physiological response: a Review[J]. IEEE Trans Multimed. 2016:340–53.
36.
go back to reference Buss S, Chouard N, Schulte-Fortkamp B. Semantic Differential tests show intercultural differences and similarities in perception of car-sounds[J]. Fortschr Der Akustik. 2000;26:502–3. Buss S, Chouard N, Schulte-Fortkamp B. Semantic Differential tests show intercultural differences and similarities in perception of car-sounds[J]. Fortschr Der Akustik. 2000;26:502–3.
38.
go back to reference Ma C, Chen C, Liu Q, et al. Sound quality evaluation of the interior noise of pure electric vehicle based on neural network model[J]. IEEE Trans Industr Electron. 2017;64(12):9442–50.CrossRef Ma C, Chen C, Liu Q, et al. Sound quality evaluation of the interior noise of pure electric vehicle based on neural network model[J]. IEEE Trans Industr Electron. 2017;64(12):9442–50.CrossRef
39.
go back to reference Miura M, Yasui N. Fluctuation strength on real sound: Motorbike exhaust and marimba tremolo[C]//. Proc Meet Acoust. AIP Publishing. 2013;19(1). Miura M, Yasui N. Fluctuation strength on real sound: Motorbike exhaust and marimba tremolo[C]//. Proc Meet Acoust. AIP Publishing. 2013;19(1).
40.
go back to reference Kim EY, Lee YJ, Lee SK. Tonality Design for Sound Quality evaluation in Printer[J]. Trans Korean Soc Noise Vib Eng. 2012;22(4):318–27.CrossRef Kim EY, Lee YJ, Lee SK. Tonality Design for Sound Quality evaluation in Printer[J]. Trans Korean Soc Noise Vib Eng. 2012;22(4):318–27.CrossRef
41.
go back to reference Wang YS, Shen GQ, Guo H, et al. Roughness modelling based on human auditory perception for sound quality evaluation of vehicle interior noise[J]. J Sound Vib. 2013;332(16):3893–904.CrossRef Wang YS, Shen GQ, Guo H, et al. Roughness modelling based on human auditory perception for sound quality evaluation of vehicle interior noise[J]. J Sound Vib. 2013;332(16):3893–904.CrossRef
43.
go back to reference Xiang J, Maue E, Fan Y, et al. Kurtosis and skewness of high-frequency brain signals are altered in paediatric epilepsy[J]. Brain Commun. 2020;2(1):fcaa036.CrossRef Xiang J, Maue E, Fan Y, et al. Kurtosis and skewness of high-frequency brain signals are altered in paediatric epilepsy[J]. Brain Commun. 2020;2(1):fcaa036.CrossRef
44.
go back to reference Sanei S, Chambers JA. EEG signal processing[M]. Wiley; 2013. Sanei S, Chambers JA. EEG signal processing[M]. Wiley; 2013.
45.
go back to reference Hernández DE, Trujillo L, Z-Flores E, et al. Detecting epilepsy in EEG signals using time, frequency and time-frequency domain features[J]. Comput Sci Eng.—Theory Appl. 2018;167–82. Hernández DE, Trujillo L, Z-Flores E, et al. Detecting epilepsy in EEG signals using time, frequency and time-frequency domain features[J]. Comput Sci Eng.—Theory Appl. 2018;167–82.
46.
go back to reference Hjorth B. EEG analysis based on time domain properties [J]. Electroencephalogr Clin Neurophysiol. 1970;29(3):306–10.CrossRef Hjorth B. EEG analysis based on time domain properties [J]. Electroencephalogr Clin Neurophysiol. 1970;29(3):306–10.CrossRef
47.
go back to reference Thammasan N, Fukui KI, Numao M. Application of deep belief networks in egg-based dynamic music-emotion recognition [C]//. The International Joint Conference on Neural Networks (IJCNN 2016). IEEE, 2016. Thammasan N, Fukui KI, Numao M. Application of deep belief networks in egg-based dynamic music-emotion recognition [C]//. The International Joint Conference on Neural Networks (IJCNN 2016). IEEE, 2016.
48.
go back to reference García-Martínez B, Martínez-Rodrigo A, Zangróniz Cantabrana R, et al. Application of entropy-based metrics to identify emotional distress from electroencephalographic recordings[J]. Entropy. 2016;18(6):221.MathSciNetCrossRef García-Martínez B, Martínez-Rodrigo A, Zangróniz Cantabrana R, et al. Application of entropy-based metrics to identify emotional distress from electroencephalographic recordings[J]. Entropy. 2016;18(6):221.MathSciNetCrossRef
49.
go back to reference Jia W, Zhao D, Zheng Y, et al. A novel optimized GA–Elman neural network algorithm[J]. Neural Comput Appl. 2019;31:449–59.CrossRef Jia W, Zhao D, Zheng Y, et al. A novel optimized GA–Elman neural network algorithm[J]. Neural Comput Appl. 2019;31:449–59.CrossRef
Metadata
Title
Investigating the Influence of Scene Video on EEG-Based Evaluation of Interior Sound in Passenger Cars
Authors
Liping Xie
Zhien Liu
Yi Sun
Yawei Zhu
Publication date
25-05-2024
Publisher
Springer US
Published in
Cognitive Computation / Issue 5/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10303-2

Premium Partner