Skip to main content
Top
Published in:

26-07-2024

Investigating the potential of germanene in solar cells: a simulation study on a-SiGe/c-Si structure

Authors: Arash Madmeli, Kiarash Madmeli, Jabbar Ganji

Published in: Journal of Computational Electronics | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Utilizing the two-dimensional (2D) nano-bands with graphene-like atom arrangement in the structure of the solar cells is of significant importance for the next generation of solar cells. In the present research, germanene (2D structure consisting of germanium atoms) was placed in ITO/germanene (1, 2, 3)/\({\hbox {MoS}}_{2}\) (n)/a-SiGe: H (i)/c-Si (P)/Au heterojunction solar cell structures once as semiconductor layers with Al (germanene1), P (germanene2), and In (germanene3) dopant, separately. Then, the free-standing germanene was used as front contact in a structure consisting of germanene/\({\hbox {MoS}}_{2}\) (n)/a-SiGe: H (i)/c-Si (P)/Au of the heterojunction cell. The impacts of different radiant intensities at 300 K temperature by the AM1.5 spectrum radiation were investigated using the AFORS-HET simulation tool. The highest efficiency was obtained in the presence of the germanene2 layer, which was 18.64%, 17.78%, and 19.56%, respectively, in 1 sun, 0.1 sun, and 100 sun radiant intensities. By applying the free-standing germanene in the structure of the proposed cell, the efficiency in radiant intensities of 1 sun, 0.1 sun, and 50 sun were 26.98%, 25.87%, and 27.99%, respectively. The results suggest that this 2D structure can improve the cell’s output parameters, especially the efficiency, positively affecting the solar cell function due to its monoatomic thickness. Therefore, germanene can be an emerging competitor to other 2D structures used in the structure of solar cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef
2.
go back to reference Neto, A.C., Guinea, F., Peres, N.M., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)CrossRef Neto, A.C., Guinea, F., Peres, N.M., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)CrossRef
3.
go back to reference Chen, S., Li, H., Zhao, K., Wu, D.: Preparation of graphene films bridged with Ag nanowires and its application in heterojunction solar cells. Sol. Energy 198, 167–174 (2020)CrossRef Chen, S., Li, H., Zhao, K., Wu, D.: Preparation of graphene films bridged with Ag nanowires and its application in heterojunction solar cells. Sol. Energy 198, 167–174 (2020)CrossRef
4.
go back to reference Gong, K., Hu, J., Cui, N., Xue, Y., Li, L., Long, G., Lin, S.: The roles of graphene and its derivatives in perovskite solar cells: a review. Mater. Des. 211, 110170 (2021)CrossRef Gong, K., Hu, J., Cui, N., Xue, Y., Li, L., Long, G., Lin, S.: The roles of graphene and its derivatives in perovskite solar cells: a review. Mater. Des. 211, 110170 (2021)CrossRef
5.
go back to reference Al Busaidi, H., Suhail, A., Jenkins, D., Pan, G.: Developed graphene/Si Schottky junction solar cells based on the top-window structure. Carbon Trends 10, 100247 (2023)CrossRef Al Busaidi, H., Suhail, A., Jenkins, D., Pan, G.: Developed graphene/Si Schottky junction solar cells based on the top-window structure. Carbon Trends 10, 100247 (2023)CrossRef
6.
go back to reference Mahdizadeh, S.J., Akhlamadi, G.: Optimized Tersoff empirical potential for germanene. J. Mol. Graph. Modell. 72, 1–5 (2017)CrossRef Mahdizadeh, S.J., Akhlamadi, G.: Optimized Tersoff empirical potential for germanene. J. Mol. Graph. Modell. 72, 1–5 (2017)CrossRef
7.
go back to reference Gürel, H.H., Özçelik, V.O., Ciraci, S.: Effects of charging and perpendicular electric field on the properties of silicene and germanene. J. Phys. Condens. Matter 25(30), 305007 (2013)CrossRef Gürel, H.H., Özçelik, V.O., Ciraci, S.: Effects of charging and perpendicular electric field on the properties of silicene and germanene. J. Phys. Condens. Matter 25(30), 305007 (2013)CrossRef
8.
go back to reference Sun, M., Ren, Q., Wang, S., Zhang, Y., Du, Y., Yu, J., Tang, W.: Magnetism in transition-metal-doped germanene: a first-principles study. Comput. Mater. Sci. 118, 112–116 (2016)CrossRef Sun, M., Ren, Q., Wang, S., Zhang, Y., Du, Y., Yu, J., Tang, W.: Magnetism in transition-metal-doped germanene: a first-principles study. Comput. Mater. Sci. 118, 112–116 (2016)CrossRef
9.
go back to reference Pang, Q., Li, L., Gao, D.L., Chai, R.P., Zhang, C.L., Song, Y.L.: Tuning the electronic and magnetic properties of germanene by surface adsorption of small nitrogen-based molecules. Physica E Low Dimens. Syst. Nanostruct. 88, 237–242 (2017)CrossRef Pang, Q., Li, L., Gao, D.L., Chai, R.P., Zhang, C.L., Song, Y.L.: Tuning the electronic and magnetic properties of germanene by surface adsorption of small nitrogen-based molecules. Physica E Low Dimens. Syst. Nanostruct. 88, 237–242 (2017)CrossRef
10.
go back to reference Jiao, Z., Yao, Q., Rudenko, A.N., Zhang, L., Zandvliet, H.J.W.: Germanium/\({\text{ MoS }}_{2}\): competition between the growth of germanene and intercalation. Phys. Rev. B 102(20), 205419 (2020)CrossRef Jiao, Z., Yao, Q., Rudenko, A.N., Zhang, L., Zandvliet, H.J.W.: Germanium/\({\text{ MoS }}_{2}\): competition between the growth of germanene and intercalation. Phys. Rev. B 102(20), 205419 (2020)CrossRef
11.
go back to reference Ye, X.S., Shao, Z.G., Zhao, H., Yang, L., Wang, C.L.: Intrinsic carrier mobility of germanene is larger than graphene’s: first-principle calculations. RSC Adv. 4(41), 21216–21220 (2014)CrossRef Ye, X.S., Shao, Z.G., Zhao, H., Yang, L., Wang, C.L.: Intrinsic carrier mobility of germanene is larger than graphene’s: first-principle calculations. RSC Adv. 4(41), 21216–21220 (2014)CrossRef
12.
go back to reference Pang, Q., Zhang, Y., Zhang, J.M., Ji, V., Xu, K.W.: Electronic and magnetic properties of pristine and chemically functionalized germanene nanoribbons. Nanoscale 3(10), 4330–4338 (2011)CrossRef Pang, Q., Zhang, Y., Zhang, J.M., Ji, V., Xu, K.W.: Electronic and magnetic properties of pristine and chemically functionalized germanene nanoribbons. Nanoscale 3(10), 4330–4338 (2011)CrossRef
13.
go back to reference Rupp, C.J., Chakraborty, S., Ahuja, R., Baierle, R.J.: The effect of impurities in ultra-thin hydrogenated silicene and germanene: a first principles study. Phys. Chem. Chem. Phys. 17(34), 22210–22216 (2015)CrossRef Rupp, C.J., Chakraborty, S., Ahuja, R., Baierle, R.J.: The effect of impurities in ultra-thin hydrogenated silicene and germanene: a first principles study. Phys. Chem. Chem. Phys. 17(34), 22210–22216 (2015)CrossRef
14.
go back to reference Dhar, N., Bandyopadhyay, A., Jana, D.: Tuning electronic, magnetic and optical properties of germanene nanosheet with site dependent adatoms arsenic and gallium: A first principles study. Curr. Appl. Phys. 17(4), 573–583 (2017)CrossRef Dhar, N., Bandyopadhyay, A., Jana, D.: Tuning electronic, magnetic and optical properties of germanene nanosheet with site dependent adatoms arsenic and gallium: A first principles study. Curr. Appl. Phys. 17(4), 573–583 (2017)CrossRef
15.
go back to reference Monshi, M.M., Aghaei, S.M., Calizo, I.: Doping and defect-induced germanene: a superior media for sensing \({{\text{ H }}_{2}{\text{ S }}}\), \({{\text{ SO }}_{2}}\), and \({{\text{ CO }}_{2}}\) gas molecules. Surf. Sci. 665(3), 96–102 (2017)CrossRef Monshi, M.M., Aghaei, S.M., Calizo, I.: Doping and defect-induced germanene: a superior media for sensing \({{\text{ H }}_{2}{\text{ S }}}\), \({{\text{ SO }}_{2}}\), and \({{\text{ CO }}_{2}}\) gas molecules. Surf. Sci. 665(3), 96–102 (2017)CrossRef
16.
go back to reference Ne, M.O., Boujnah, M., Benyoussef, A., El Kenz, A.: Comparative study of electronic and optical properties of graphene and germanene: DFT study. Optik 158, 693–698 (2018)CrossRef Ne, M.O., Boujnah, M., Benyoussef, A., El Kenz, A.: Comparative study of electronic and optical properties of graphene and germanene: DFT study. Optik 158, 693–698 (2018)CrossRef
17.
go back to reference Chandiramouli, R., Nagarajan, V.: Adsorption studies of \({{\text{ NH }}_{3}}\) molecules on functionalized germanene nanosheet—a DFT study. Chem. Phys. Lett. 665, 22–30 (2016)CrossRef Chandiramouli, R., Nagarajan, V.: Adsorption studies of \({{\text{ NH }}_{3}}\) molecules on functionalized germanene nanosheet—a DFT study. Chem. Phys. Lett. 665, 22–30 (2016)CrossRef
18.
go back to reference Nagarajan, V., Chandiramouli, R.: \({\text{ NO }}_{2}\) adsorption behaviour on germanene nanosheet—a first-principles investigation. Superlattices Microstruct. 101(3), 160–171 (2017)CrossRef Nagarajan, V., Chandiramouli, R.: \({\text{ NO }}_{2}\) adsorption behaviour on germanene nanosheet—a first-principles investigation. Superlattices Microstruct. 101(3), 160–171 (2017)CrossRef
19.
go back to reference Chen, X., Yang, Q., Meng, R., Jiang, J., Liang, Q., Tan, C., Sun, X.: The electronic and optical properties of novel germanene and antimonene heterostructures. J. Mater. Chem. C 4(23), 5434–5441 (2016)CrossRef Chen, X., Yang, Q., Meng, R., Jiang, J., Liang, Q., Tan, C., Sun, X.: The electronic and optical properties of novel germanene and antimonene heterostructures. J. Mater. Chem. C 4(23), 5434–5441 (2016)CrossRef
20.
go back to reference Froitzheim, A., Stangl, R., Elstner, L., Kriegel, M., Fuhs, W.: AFORS-HET: a computer-program for the simulation of heterojunction solar cells to be distributed for public use. In: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, vol. 1, pp. 279–282 (2003) Froitzheim, A., Stangl, R., Elstner, L., Kriegel, M., Fuhs, W.: AFORS-HET: a computer-program for the simulation of heterojunction solar cells to be distributed for public use. In: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, vol. 1, pp. 279–282 (2003)
21.
go back to reference Stangl, R., Leendertz, C., Haschke, J.: Numerical simulation of solar cells and solar cell characterization methods: the open-source on demand program AFORS-HET. Solar Energy 14, 319–352 (2010) Stangl, R., Leendertz, C., Haschke, J.: Numerical simulation of solar cells and solar cell characterization methods: the open-source on demand program AFORS-HET. Solar Energy 14, 319–352 (2010)
22.
go back to reference Dwivedi, N., Kumar, S., Bisht, A., Patel, K., Sudhakar, S.: Simulation approach for optimization of device structure and thickness of HIT solar cells to achieve \(\sim\) 27% efficiency. Sol. Energy 88, 31–41 (2013)CrossRef Dwivedi, N., Kumar, S., Bisht, A., Patel, K., Sudhakar, S.: Simulation approach for optimization of device structure and thickness of HIT solar cells to achieve \(\sim\) 27% efficiency. Sol. Energy 88, 31–41 (2013)CrossRef
23.
go back to reference Borah, C.K., Tyagi, P.K., Kumar, S.: The prospective application of a graphene/\({\text{ MoS }}_{2}\) heterostructure in Si-HIT solar cells for higher efficiency. Nanoscale Adv. 2(8), 3231–3243 (2020)CrossRef Borah, C.K., Tyagi, P.K., Kumar, S.: The prospective application of a graphene/\({\text{ MoS }}_{2}\) heterostructure in Si-HIT solar cells for higher efficiency. Nanoscale Adv. 2(8), 3231–3243 (2020)CrossRef
24.
go back to reference Xu, S., Zeng, X., Wang, W., Zhou, G., Hu, Y., Wu, S., Zeng, Y.: Simulation and optimization characteristic of novel \({\text{ MoS }}_{2}\)/c-Si HIT solar cell. J. Miner. Mater. Charact. Eng. 5(5), 323–338 (2017) Xu, S., Zeng, X., Wang, W., Zhou, G., Hu, Y., Wu, S., Zeng, Y.: Simulation and optimization characteristic of novel \({\text{ MoS }}_{2}\)/c-Si HIT solar cell. J. Miner. Mater. Charact. Eng. 5(5), 323–338 (2017)
25.
go back to reference Hao, L.Z., Gao, W., Liu, Y.J., Han, Z.D., Xue, Q.Z., Guo, W.Y., Zhu, J., Li, Y.R.: High-performance n-\({\text{ MoS }}_{2}\)/i-\({{\text{ SiO }}_{2}}\)/p-Si heterojunction solar cells. Nanoscale 7(18), 8304–8308 (2015)CrossRef Hao, L.Z., Gao, W., Liu, Y.J., Han, Z.D., Xue, Q.Z., Guo, W.Y., Zhu, J., Li, Y.R.: High-performance n-\({\text{ MoS }}_{2}\)/i-\({{\text{ SiO }}_{2}}\)/p-Si heterojunction solar cells. Nanoscale 7(18), 8304–8308 (2015)CrossRef
26.
go back to reference Chaudhary, R., Patel, K., Sinha, R.K., Kumar, S., Tyagi, P.K.: Potential application of mono/bi-layer molybdenum disulfide (\({\text{ MoS }}_{2}\)) sheet as an efficient transparent conducting electrode in silicon heterojunction solar cells. J. Appl. Phys. 120(1), 013104 (2016)CrossRef Chaudhary, R., Patel, K., Sinha, R.K., Kumar, S., Tyagi, P.K.: Potential application of mono/bi-layer molybdenum disulfide (\({\text{ MoS }}_{2}\)) sheet as an efficient transparent conducting electrode in silicon heterojunction solar cells. J. Appl. Phys. 120(1), 013104 (2016)CrossRef
27.
go back to reference Peng, B., Zhang, H., Shao, H., Xu, Y., Ni, G., Zhang, R., Zhu, H.: Phonon transport properties of two-dimensional group-IV materials from ab initio calculations. Phys. Rev. B 94(24), 245420 (2016)CrossRef Peng, B., Zhang, H., Shao, H., Xu, Y., Ni, G., Zhang, R., Zhu, H.: Phonon transport properties of two-dimensional group-IV materials from ab initio calculations. Phys. Rev. B 94(24), 245420 (2016)CrossRef
28.
go back to reference Ye, M., Quhe, R., Zheng, J., Ni, Z., Wang, Y., Yuan, Y., Tse, G., Shi, J., Gao, Z., Lu, J.: Tunable band gap in germanene by surface adsorption. Phys. E 59, 60–65 (2014)CrossRef Ye, M., Quhe, R., Zheng, J., Ni, Z., Wang, Y., Yuan, Y., Tse, G., Shi, J., Gao, Z., Lu, J.: Tunable band gap in germanene by surface adsorption. Phys. E 59, 60–65 (2014)CrossRef
29.
go back to reference Bechstedt, F., Matthes, L., Gori, P., Pulci, O.: Infrared absorbance of silicene and germanene. Appl. Phys. Lett. 100(26), 261906 (2012)CrossRef Bechstedt, F., Matthes, L., Gori, P., Pulci, O.: Infrared absorbance of silicene and germanene. Appl. Phys. Lett. 100(26), 261906 (2012)CrossRef
30.
go back to reference Pamungkas, M.A., Salim, M.F., Afifah, D.N.: Effects of sodium and chlorine doping on optical properties of germanene: density functional theory calculation. IOP Conf. Ser. Mater. Sci. Eng. 299(1), 012045 (2018)CrossRef Pamungkas, M.A., Salim, M.F., Afifah, D.N.: Effects of sodium and chlorine doping on optical properties of germanene: density functional theory calculation. IOP Conf. Ser. Mater. Sci. Eng. 299(1), 012045 (2018)CrossRef
31.
go back to reference Patel, K., Tyagi, P.K.: Multilayer graphene as a transparent conducting electrode in silicon heterojunction solar cells. AIP Adv. 5(7), 077165 (2015)CrossRef Patel, K., Tyagi, P.K.: Multilayer graphene as a transparent conducting electrode in silicon heterojunction solar cells. AIP Adv. 5(7), 077165 (2015)CrossRef
32.
go back to reference Ma, J., Yuan, Y., Sun, P.: Performances enhancement of graphene/n-Si Schottky junction solar cells with dual-functional \({\text{ MoS }}_{2}\) interfacial layers. J. Alloys Compd. 883, 160898 (2021)CrossRef Ma, J., Yuan, Y., Sun, P.: Performances enhancement of graphene/n-Si Schottky junction solar cells with dual-functional \({\text{ MoS }}_{2}\) interfacial layers. J. Alloys Compd. 883, 160898 (2021)CrossRef
33.
go back to reference Jang, C.W., Shin, D.H., Ko, J.S., Choi, S.H.: Performance enhancement of graphene/porous Si solar cells by employing layer-controlled \({\text{ MoS }}_{2}\). Appl. Surf. Sci. 532, 147460 (2020)CrossRef Jang, C.W., Shin, D.H., Ko, J.S., Choi, S.H.: Performance enhancement of graphene/porous Si solar cells by employing layer-controlled \({\text{ MoS }}_{2}\). Appl. Surf. Sci. 532, 147460 (2020)CrossRef
34.
go back to reference Ma, J., Bai, H., Zhao, W., Yuan, Y., Zhang, K.: High efficiency graphene/\({\text{ MoS }}_{2}\)/Si Schottky barrier solar cells using layer-controlled \({\text{ MoS }}_{2}\) films. Sol. Energy 160, 76–84 (2018)CrossRef Ma, J., Bai, H., Zhao, W., Yuan, Y., Zhang, K.: High efficiency graphene/\({\text{ MoS }}_{2}\)/Si Schottky barrier solar cells using layer-controlled \({\text{ MoS }}_{2}\) films. Sol. Energy 160, 76–84 (2018)CrossRef
Metadata
Title
Investigating the potential of germanene in solar cells: a simulation study on a-SiGe/c-Si structure
Authors
Arash Madmeli
Kiarash Madmeli
Jabbar Ganji
Publication date
26-07-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 5/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02199-w