Skip to main content
Top

2023 | OriginalPaper | Chapter

4. Investigation of a New Methanol, Hydrogen, and Electricity Production System Based on Carbon Capture and Utilization

Authors : Leyla Khani, Mousa Mohammadpourfard

Published in: Energy Systems Transition

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

It is well-known that clean energy transition requires low carbon emission. The increase in population, economic development, and human welfare demands has led to a rise in energy consumption, mainly supplied by fossil fuels. However, burning fossil fuels produces carbon dioxide, which is a greenhouse gas and a contributor to environmental problems. Therefore, carbon capture and conversion to different products have gained attention. On the other hand, combining two or more different thermodynamic systems for simultaneous production of various demands from one energy source looks reasonable. In this regard, a new trigeneration system is proposed to decrease atmospheric carbon dioxide emission and produce methanol, hydrogen, and power. A flue gas stream with a defined composition, solar energy, and atmospheric air are the system’s inlets. Then, mass, energy, and exergy balance equations are applied for each subsystem to investigate the system’s thermodynamic performance. Also, the effect of changing operating parameters on the performance of each subsystem is studied.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Choi W-J, Seo J-B, Jang S-Y, Jung J-H, Oh K-J (2009) Removal characteristics of CO2 using aqueous MEA/AMP solutions in the absorption and regeneration process. J Environ Sci 21:907–913CrossRef Choi W-J, Seo J-B, Jang S-Y, Jung J-H, Oh K-J (2009) Removal characteristics of CO2 using aqueous MEA/AMP solutions in the absorption and regeneration process. J Environ Sci 21:907–913CrossRef
2.
go back to reference Bryant S (2007) Geologic CO2 storage—can the oil and gas industry help save the planet? J Pet Technol 59:98–105CrossRef Bryant S (2007) Geologic CO2 storage—can the oil and gas industry help save the planet? J Pet Technol 59:98–105CrossRef
3.
go back to reference Ribeiro AM, Santos JC, Rodrigues AE (2010) PSA design for stoichiometric adjustment of bio-syngas for methanol production and co-capture of carbon dioxide. Chem Eng J 163:355–363CrossRef Ribeiro AM, Santos JC, Rodrigues AE (2010) PSA design for stoichiometric adjustment of bio-syngas for methanol production and co-capture of carbon dioxide. Chem Eng J 163:355–363CrossRef
4.
go back to reference Peters M, Köhler B, Kuckshinrichs W, Leitner W, Markewitz P, Müller TE (2011) Chemical technologies for exploiting and recycling carbon dioxide into the value chain. ChemSusChem 4:1216–1240CrossRef Peters M, Köhler B, Kuckshinrichs W, Leitner W, Markewitz P, Müller TE (2011) Chemical technologies for exploiting and recycling carbon dioxide into the value chain. ChemSusChem 4:1216–1240CrossRef
5.
go back to reference Quadrelli EA, Centi G, Duplan JL, Perathoner S (2011) Carbon dioxide recycling: emerging large-scale technologies with industrial potential. ChemSusChem 4:1194–1215CrossRef Quadrelli EA, Centi G, Duplan JL, Perathoner S (2011) Carbon dioxide recycling: emerging large-scale technologies with industrial potential. ChemSusChem 4:1194–1215CrossRef
6.
go back to reference Olajire AA (2013) Valorization of greenhouse carbon dioxide emissions into value-added products by catalytic processes. Journal of CO2 Utilization 3:74–92CrossRef Olajire AA (2013) Valorization of greenhouse carbon dioxide emissions into value-added products by catalytic processes. Journal of CO2 Utilization 3:74–92CrossRef
7.
go back to reference Riaz A, Zahedi G, Klemeš JJ (2013) A review of cleaner production methods for the manufacture of methanol. J Clean Prod 57:19–37CrossRef Riaz A, Zahedi G, Klemeš JJ (2013) A review of cleaner production methods for the manufacture of methanol. J Clean Prod 57:19–37CrossRef
8.
go back to reference Dincer I, Rosen MA, Ahmadi P (2017) Modeling and optimization of multigeneration energy systems. In: Optimization of energy systems. John Wiley & Sons Ltd, Chichester, pp 398–446CrossRef Dincer I, Rosen MA, Ahmadi P (2017) Modeling and optimization of multigeneration energy systems. In: Optimization of energy systems. John Wiley & Sons Ltd, Chichester, pp 398–446CrossRef
9.
go back to reference Mignard D, Sahibzada M, Duthie J, Whittington H (2003) Methanol synthesis from flue-gas CO2 and renewable electricity: a feasibility study. Int J Hydrog Energy 28:455–464CrossRef Mignard D, Sahibzada M, Duthie J, Whittington H (2003) Methanol synthesis from flue-gas CO2 and renewable electricity: a feasibility study. Int J Hydrog Energy 28:455–464CrossRef
10.
go back to reference Boretti A (2013) Renewable hydrogen to recycle CO2 to methanol. Int J Hydrog Energy 38:1806–1812CrossRef Boretti A (2013) Renewable hydrogen to recycle CO2 to methanol. Int J Hydrog Energy 38:1806–1812CrossRef
11.
go back to reference Sayah AK, Sayah AK (2011) Wind-hydrogen utilization for methanol production: an economy assessment in Iran. Renew Sust Energ Rev 15:3570–3574CrossRef Sayah AK, Sayah AK (2011) Wind-hydrogen utilization for methanol production: an economy assessment in Iran. Renew Sust Energ Rev 15:3570–3574CrossRef
12.
go back to reference Esmaili P, Dincer I, Naterer G (2015) Development and analysis of an integrated photovoltaic system for hydrogen and methanol production. Int J Hydrog Energy 40:11140–11153CrossRef Esmaili P, Dincer I, Naterer G (2015) Development and analysis of an integrated photovoltaic system for hydrogen and methanol production. Int J Hydrog Energy 40:11140–11153CrossRef
13.
go back to reference Leonzio G, Zondervan E, Foscolo PU (2019) Methanol production by CO2 hydrogenation: analysis and simulation of reactor performance. Int J Hydrog Energy 44:7915–7933CrossRef Leonzio G, Zondervan E, Foscolo PU (2019) Methanol production by CO2 hydrogenation: analysis and simulation of reactor performance. Int J Hydrog Energy 44:7915–7933CrossRef
14.
go back to reference Atsonios K, Panopoulos KD, Kakaras E (2016) Investigation of technical and economic aspects for methanol production through CO2 hydrogenation. Int J Hydrog Energy 41:2202–2214CrossRef Atsonios K, Panopoulos KD, Kakaras E (2016) Investigation of technical and economic aspects for methanol production through CO2 hydrogenation. Int J Hydrog Energy 41:2202–2214CrossRef
15.
go back to reference Rivarolo M, Bellotti D, Magistri L, Massardo A (2016) Feasibility study of methanol production from different renewable sources and thermo-economic analysis. Int J Hydrog Energy 41:2105–2116CrossRef Rivarolo M, Bellotti D, Magistri L, Massardo A (2016) Feasibility study of methanol production from different renewable sources and thermo-economic analysis. Int J Hydrog Energy 41:2105–2116CrossRef
16.
go back to reference Nami H, Ranjbar F, Yari M (2019) Methanol synthesis from renewable H2 and captured CO2 from S-Graz cycle–energy, exergy, exergoeconomic and exergoenvironmental (4E) analysis. Int J Hydrog Energy 44:26128–26147CrossRef Nami H, Ranjbar F, Yari M (2019) Methanol synthesis from renewable H2 and captured CO2 from S-Graz cycle–energy, exergy, exergoeconomic and exergoenvironmental (4E) analysis. Int J Hydrog Energy 44:26128–26147CrossRef
17.
go back to reference Kiatphuengporn S, Donphai W, Jantaratana P, Yigit N, Föttinger K, Rupprechter G et al (2017) Cleaner production of methanol from carbon dioxide over copper and iron supported MCM-41 catalysts using innovative integrated magnetic field-packed bed reactor. J Clean Prod 142:1222–1233CrossRef Kiatphuengporn S, Donphai W, Jantaratana P, Yigit N, Föttinger K, Rupprechter G et al (2017) Cleaner production of methanol from carbon dioxide over copper and iron supported MCM-41 catalysts using innovative integrated magnetic field-packed bed reactor. J Clean Prod 142:1222–1233CrossRef
18.
go back to reference Luu MT, Milani D, Abbas A (2016) Analysis of CO2 utilization for methanol synthesis integrated with enhanced gas recovery. J Clean Prod 112:3540–3554CrossRef Luu MT, Milani D, Abbas A (2016) Analysis of CO2 utilization for methanol synthesis integrated with enhanced gas recovery. J Clean Prod 112:3540–3554CrossRef
19.
go back to reference Charoensuppanimit P, Kitsahawong K, Kim-Lohsoontorn P, Assabumrungrat S (2019) Incorporation of hydrogen by-product from NaOCH3 production for methanol synthesis via CO2 hydrogenation: process analysis and economic evaluation. J Clean Prod 212:893–909CrossRef Charoensuppanimit P, Kitsahawong K, Kim-Lohsoontorn P, Assabumrungrat S (2019) Incorporation of hydrogen by-product from NaOCH3 production for methanol synthesis via CO2 hydrogenation: process analysis and economic evaluation. J Clean Prod 212:893–909CrossRef
20.
go back to reference Ghosh S, Uday V, Giri A, Srinivas S (2019) Biogas to methanol: a comparison of conversion processes involving direct carbon dioxide hydrogenation and via reverse water gas shift reaction. J Clean Prod 217:615–626CrossRef Ghosh S, Uday V, Giri A, Srinivas S (2019) Biogas to methanol: a comparison of conversion processes involving direct carbon dioxide hydrogenation and via reverse water gas shift reaction. J Clean Prod 217:615–626CrossRef
21.
go back to reference Gao R, Zhang C, Lee Y-J, Kwak G, Jun K-W, Kim SK et al (2020) Sustainable production of methanol using landfill gas via carbon dioxide reforming and hydrogenation: process development and techno-economic analysis. J Clean Prod 272:122552CrossRef Gao R, Zhang C, Lee Y-J, Kwak G, Jun K-W, Kim SK et al (2020) Sustainable production of methanol using landfill gas via carbon dioxide reforming and hydrogenation: process development and techno-economic analysis. J Clean Prod 272:122552CrossRef
22.
go back to reference Alsayegh S, Johnson J, Ohs B, Wessling M (2019) Methanol production via direct carbon dioxide hydrogenation using hydrogen from photocatalytic water splitting: process development and techno-economic analysis. J Clean Prod 208:1446–1458CrossRef Alsayegh S, Johnson J, Ohs B, Wessling M (2019) Methanol production via direct carbon dioxide hydrogenation using hydrogen from photocatalytic water splitting: process development and techno-economic analysis. J Clean Prod 208:1446–1458CrossRef
23.
go back to reference Matzen M, Demirel Y (2016) Methanol and dimethyl ether from renewable hydrogen and carbon dioxide: alternative fuels production and life-cycle assessment. J Clean Prod 139:1068–1077CrossRef Matzen M, Demirel Y (2016) Methanol and dimethyl ether from renewable hydrogen and carbon dioxide: alternative fuels production and life-cycle assessment. J Clean Prod 139:1068–1077CrossRef
24.
go back to reference Nazerifard R et al (2021) Design and thermodynamic analysis of a novel methanol, hydrogen, and power trigeneration system based on renewable energy and flue gas carbon dioxide. Energy Convers Manag 233:113922CrossRef Nazerifard R et al (2021) Design and thermodynamic analysis of a novel methanol, hydrogen, and power trigeneration system based on renewable energy and flue gas carbon dioxide. Energy Convers Manag 233:113922CrossRef
25.
go back to reference Abam FI, Briggs TA, Ekwe EB, Kanu C, Effiom SO, Ndukwu M et al (2019) Exergy analysis of a novel low-heat recovery organic Rankine cycle (ORC) for combined cooling and power generation. Energy Sources Part A: Recovery Util Environ Eff 41:1649–1662CrossRef Abam FI, Briggs TA, Ekwe EB, Kanu C, Effiom SO, Ndukwu M et al (2019) Exergy analysis of a novel low-heat recovery organic Rankine cycle (ORC) for combined cooling and power generation. Energy Sources Part A: Recovery Util Environ Eff 41:1649–1662CrossRef
26.
go back to reference Zhou N, Wang X, Chen Z, Wang Z (2013) Experimental study on organic Rankine cycle for waste heat recovery from low-temperature flue gas. Energy 55:216–225CrossRef Zhou N, Wang X, Chen Z, Wang Z (2013) Experimental study on organic Rankine cycle for waste heat recovery from low-temperature flue gas. Energy 55:216–225CrossRef
27.
go back to reference Guo C, Du X, Yang L, Yang Y (2015) Organic Rankine cycle for power recovery of exhaust flue gas. Appl Therm Eng 75:135–144CrossRef Guo C, Du X, Yang L, Yang Y (2015) Organic Rankine cycle for power recovery of exhaust flue gas. Appl Therm Eng 75:135–144CrossRef
28.
go back to reference Laribi S, Dubois L, De Weireld G, Thomas D (2019) Study of the post-combustion CO2 capture process by absorption-regeneration using amine solvents applied to cement plant flue gases with high CO2 contents. International Journal of Greenhouse Gas Control 90:102799CrossRef Laribi S, Dubois L, De Weireld G, Thomas D (2019) Study of the post-combustion CO2 capture process by absorption-regeneration using amine solvents applied to cement plant flue gases with high CO2 contents. International Journal of Greenhouse Gas Control 90:102799CrossRef
29.
go back to reference Léonard G (2013) Optimal design of a CO2 capture unit with assessment of solvent degradation. Université de Liège, Liège Léonard G (2013) Optimal design of a CO2 capture unit with assessment of solvent degradation. Université de Liège, Liège
30.
go back to reference Ursua A, Gandia LM, Sanchis P (2011) Hydrogen production from water electrolysis: current status and future trends. Proc IEEE 100:410–426CrossRef Ursua A, Gandia LM, Sanchis P (2011) Hydrogen production from water electrolysis: current status and future trends. Proc IEEE 100:410–426CrossRef
31.
go back to reference Millet P, Mbemba N, Grigoriev S, Fateev V, Aukauloo A, Etiévant C (2011) Electrochemical performances of PEM water electrolysis cells and perspectives. Int J Hydrog Energy 36:4134–4142CrossRef Millet P, Mbemba N, Grigoriev S, Fateev V, Aukauloo A, Etiévant C (2011) Electrochemical performances of PEM water electrolysis cells and perspectives. Int J Hydrog Energy 36:4134–4142CrossRef
32.
go back to reference Jamali Ghahderijani M, Ommi F (2016) One-dimensional Electrolyzer modeling and system sizing for solar hydrogen production: an economic approach. J Renew Energy Environ 3:31–43 Jamali Ghahderijani M, Ommi F (2016) One-dimensional Electrolyzer modeling and system sizing for solar hydrogen production: an economic approach. J Renew Energy Environ 3:31–43
33.
go back to reference García-Valverde R, Espinosa N, Urbina A (2012) Simple PEM water electrolyser model and experimental validation. Int J Hydrog Energy 37:1927–1938CrossRef García-Valverde R, Espinosa N, Urbina A (2012) Simple PEM water electrolyser model and experimental validation. Int J Hydrog Energy 37:1927–1938CrossRef
34.
go back to reference Awasthi A, Scott K, Basu S (2011) Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production. Int J Hydrog Energy 36:14779–14786CrossRef Awasthi A, Scott K, Basu S (2011) Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production. Int J Hydrog Energy 36:14779–14786CrossRef
35.
go back to reference Ni M, Leung MK, Leung DY (2008) Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant. Energy Convers Manag 49:2748–2756CrossRef Ni M, Leung MK, Leung DY (2008) Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant. Energy Convers Manag 49:2748–2756CrossRef
36.
go back to reference Ruuskanen V, Koponen J, Huoman K, Kosonen A, Niemelä M, Ahola J (2017) PEM water electrolyzer model for a power-hardware-in-loop simulator. Int J Hydrog Energy 42:10775–10784CrossRef Ruuskanen V, Koponen J, Huoman K, Kosonen A, Niemelä M, Ahola J (2017) PEM water electrolyzer model for a power-hardware-in-loop simulator. Int J Hydrog Energy 42:10775–10784CrossRef
37.
go back to reference Anicic B, Trop P, Goricanec D (2014) Comparison between two methods of methanol production from carbon dioxide. Energy 77:279–289CrossRef Anicic B, Trop P, Goricanec D (2014) Comparison between two methods of methanol production from carbon dioxide. Energy 77:279–289CrossRef
38.
go back to reference Van-Dal ÉS, Bouallou C (2013) Design and simulation of a methanol production plant from CO2 hydrogenation. J Clean Prod 57:38–45CrossRef Van-Dal ÉS, Bouallou C (2013) Design and simulation of a methanol production plant from CO2 hydrogenation. J Clean Prod 57:38–45CrossRef
39.
go back to reference Ko J, Chippar P, Ju H (2010) A one-dimensional, two-phase model for direct methanol fuel cells–part I: model development and parametric study. Energy 35:2149–2159CrossRef Ko J, Chippar P, Ju H (2010) A one-dimensional, two-phase model for direct methanol fuel cells–part I: model development and parametric study. Energy 35:2149–2159CrossRef
40.
go back to reference Yin K-M (2008) A theoretical model of the membrane electrode assembly of liquid feed direct methanol fuel cell with consideration of water and methanol crossover. J Power Sources 179:700–710CrossRef Yin K-M (2008) A theoretical model of the membrane electrode assembly of liquid feed direct methanol fuel cell with consideration of water and methanol crossover. J Power Sources 179:700–710CrossRef
41.
go back to reference Sharifi S, Rahimi R, Mohebbi-Kalhori D, Colpan CO (2018) Numerical investigation of methanol crossover through the membrane in a direct methanol fuel cell. Iran J Hydrog Fuel Cell 5:21–33 Sharifi S, Rahimi R, Mohebbi-Kalhori D, Colpan CO (2018) Numerical investigation of methanol crossover through the membrane in a direct methanol fuel cell. Iran J Hydrog Fuel Cell 5:21–33
42.
go back to reference Meyers JP, Newman J (2002) Simulation of the direct methanol fuel cell: II. Modeling and data analysis of transport and kinetic phenomena. J Electrochem Soc 149:A718CrossRef Meyers JP, Newman J (2002) Simulation of the direct methanol fuel cell: II. Modeling and data analysis of transport and kinetic phenomena. J Electrochem Soc 149:A718CrossRef
43.
go back to reference Bernardi DM, Verbrugge MW (1991) Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte. AICHE J 37:1151–1163CrossRef Bernardi DM, Verbrugge MW (1991) Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte. AICHE J 37:1151–1163CrossRef
44.
go back to reference Wang Z, Wang C (2003) Mathematical modeling of liquid-feed direct methanol fuel cells. J Electrochem Soc 150:A508CrossRef Wang Z, Wang C (2003) Mathematical modeling of liquid-feed direct methanol fuel cells. J Electrochem Soc 150:A508CrossRef
45.
go back to reference Lee J, Lee S, Han D, Gwak G, Ju H (2017) Numerical modeling and simulations of active direct methanol fuel cell (DMFC) systems under various ambient temperatures and operating conditions. Int J Hydrog Energy 42:1736–1750CrossRef Lee J, Lee S, Han D, Gwak G, Ju H (2017) Numerical modeling and simulations of active direct methanol fuel cell (DMFC) systems under various ambient temperatures and operating conditions. Int J Hydrog Energy 42:1736–1750CrossRef
46.
go back to reference Xu C, Faghri A (2011) Analysis of an active tubular liquid-feed direct methanol fuel cell. J Power Sources 196:6332–6346CrossRef Xu C, Faghri A (2011) Analysis of an active tubular liquid-feed direct methanol fuel cell. J Power Sources 196:6332–6346CrossRef
47.
go back to reference Kvamsdal HM, Rochelle GT (2008) Effects of the temperature bulge in CO2 absorption from flue gas by aqueous monoethanolamine. Ind Eng Chem Res 47:867–875CrossRef Kvamsdal HM, Rochelle GT (2008) Effects of the temperature bulge in CO2 absorption from flue gas by aqueous monoethanolamine. Ind Eng Chem Res 47:867–875CrossRef
48.
go back to reference Ioroi T, Yasuda K, Siroma Z, Fujiwara N, Miyazaki Y (2002) Thin film electrocatalyst layer for unitized regenerative polymer electrolyte fuel cells. J Power Sources 112:583–587CrossRef Ioroi T, Yasuda K, Siroma Z, Fujiwara N, Miyazaki Y (2002) Thin film electrocatalyst layer for unitized regenerative polymer electrolyte fuel cells. J Power Sources 112:583–587CrossRef
49.
go back to reference Ge J, Liu H (2005) Experimental studies of a direct methanol fuel cell. J Power Sources 142:56–69CrossRef Ge J, Liu H (2005) Experimental studies of a direct methanol fuel cell. J Power Sources 142:56–69CrossRef
Metadata
Title
Investigation of a New Methanol, Hydrogen, and Electricity Production System Based on Carbon Capture and Utilization
Authors
Leyla Khani
Mousa Mohammadpourfard
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-22186-6_4