Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

24-04-2017 | New Trends in data pre-processing methods for signal and image classification | Issue 10/2017

Neural Computing and Applications 10/2017

Investigation of different approaches for noise reduction in functional near-infrared spectroscopy signals for brain–computer interface applications

Journal:
Neural Computing and Applications > Issue 10/2017
Authors:
A. Janani, M. Sasikala

Abstract

Functional near-infrared spectroscopy (fNIRS) is a noninvasive technique to measure the hemodynamic response from the cerebral cortex. The acquired fNIRS signal usually contains influences generated from physiological processes, also called “global” oscillations, in addition to motion artifacts that impede detection of the localized hemodynamic response due to cortical activation. Preprocessing is the fundamental step to enhance the quality of fNIRS signals corresponding to movement tasks for efficient classification of brain–computer interface (BCI) application. Various signal preprocessing approaches such as band-pass filtering, correlation-based signal improvement, median filtering, Savitzky–Golay filtering, wavelet denoising and independent component analysis (ICA) have been investigated on experimental datasets acquired during hand movement tasks and are compared to one another using artifact power attenuation and contrast-to-noise ratio (CNR) metrics. The results showed that wavelet denoising method attenuated the artifact energy of the datasets belonging to Subjects 1 and 2 as well as enhanced the CNR. In the case of Subject 1, before denoising the values of ΔHbR and ΔHbO were 0.6392 and 0.8710, respectively. Wavelet method improved these values to 0.8085 and 0.9790. In the case of Subject 2, the CNR values of ΔHbR and ΔHbO signals were improved from 0.0221 and 0.0638 to 1.1242 and 0.3460, respectively. In this study, ICA was also demonstrated to suppress noises related to physiological oscillations including Mayer wave influence and other unknown artifacts. It greatly reduced the sharp spikes present in the Subject 2 dataset. On the basis of the results obtained, it can be shown that application of such filtering algorithms for fNIRS signal could effectively classify motor tasks to develop BCI applications.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 10/2017

Neural Computing and Applications 10/2017 Go to the issue

New Trends in data pre-processing methods for signal and image classification

Leakage detection and localization on water transportation pipelines: a multi-label classification approach

New Trends in data pre-processing methods for signal and image classification

Automatic detection of respiratory arrests in OSA patients using PPG and machine learning techniques

New Trends in data pre-processing methods for signal and image classification

An approach for feature selection using local searching and global optimization techniques

Premium Partner

    Image Credits